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ABSTRACT

In this work, we study the problem of reconstructing a sparse signal from a limited number of

its linear projections when the following knowledge is available. (1) We are given partial, and partly

erroneous, knowledge of the signal’s support, denoted byT . (2) We are also given an erroneous esti-

mate of the signal values onT . Alternatively, in recursive reconstruction applications, like real-time

dynamic MRI, one can use the support estimate and the signal value estimate from the previous time

instant. We presented algorithms by modifying Compressive Sensing (CS) using the partly erroneous

support and also the erroneous signal estimate for both noiseless and noisy measurements. The idea of

our proposed solution is to solve a convex relaxation of the following problem: find the signal that is

sparsest outside the setT , while being “close enough” to signal estimate onT and satisfying the data

constraint. We obtain sufficient conditions for exact reconstruction using modified-CS and regularized

modified-BP. These are much weaker than those needed for CS when the size of the unknown part

of the support is small compared to the support size. We also propose solutions modified-BPDN and

regularized modified-BPDN for noisy measurements using the similar idea. We obtain the computable

and tighter bounds without any sufficient conditions for the reconstruction error. Simulation compar-

isons for both sparse and compressible signals are shown. In this work,we also study the application of

CS based approaches for blood oxygenation level dependent (BOLD) contrast functional MR imaging

(fMRI). In particular, we show, via exhaustive experiments on actual MR scanner data for brain fMRI,

that our recently proposed approach for recursive reconstructionof sparse signal sequences, modified-

CS-residual, outperforms other existing CS based approaches.
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CHAPTER 1. Introduction

In traditional signal processing technology, it is required to sample the signal with Nyquist rate

which is twice of the signal’s bandwidth to exactly recover the signal, see Fig.1.1. Fig. 1.1 shows

the diagram of the conventional transmission scheme. The signal is first sampled at Nyquist rate so

that we can obtain N samples. Then, they are compressed to only K samples whereK � N . After

that, the compressed data will be transmitted to the receiver and the receiverwill decompress the data.

Finally, the original signal will be recovered. However, we will have such a question that why we are

bothering to use such a high sampling rate since we only use K sample during transmission. There-

fore, our question is whether we can do sampling in a lower rate than Nyquistrate and combine the

sampling and compression into one simple step. If we can recover the signal with highly undersampled

measurements, we can speed up the data acquisition significantly and greatly reduce the data capturing

time. Especially, in medical image reconstruction such as CT or MRI, this will greatly lower the risk

of radiation and help to reduce the motion artifact which brings trouble for thereconstruction and clin-

ical diagnosis. In addition, undersampling can allow longer scanning read-out time or increase of the

radiation dose and this can increase signal-to-noise ratio (SNR) so that thereconstructed images bear

good quality.

Compressive Sensing (CS) provides an answer to this question. CS theories have proved that if the

signal is sparse or compressible in itself or some transform domain, we are able to recover the original

signal exactly or with small loss from highly undersampled linear projections [1, 2, 3, 4, 5, 6, 7, 8, 9].

“Sparse” means the signal only has very few nonzero elements and we define the locations of nonzero

elements as the support of this signal. Similarly, “compressible” means only very few elements are

significantly large while others are much smaller. We also defineβ% energy support as the locations of

those large coefficients containingβ% signal energy. As is known, many medical images are sparse or
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Sample Compress
N K

N >> K

Transmit

ReceiveDecompress
KN

Why so many samples?

Reconstructed signal (sparse/compressible)

Figure 1.1 The limitation of conventional transmission scheme

compressible in wavelet domain, e.g., in the cardiac and larynx image sequence of Fig. 1.2, the sizes

of their 99% energy support are only6% or 7% of the image sizes. Many other images can be sparse

in discrete cosine transform (DCT), discrete Fourier transform (DFT), total variation (TV) and other

domains. To recover the original signal, the simplest way to find the sparsest solution is to exhaustively

search the entire signal space in a brute force way. However, we knowit is computationally expensive.

CS provides practical solutions which can be solved in polynomial complexity for the sparse recon-

struction. Two famous groups of CS algorithms are greedy methods and convex relaxation approaches.

The greedy methods include subspace pursuit[6], Orthogonal MatchingPursuit (OMP)[7], Stagewise

OMP[8], CoSAMP[9], etc. The convex relation approaches include Basis Pursuit(BP) and Basis Pursuit

Denoising (BPDN)[1], Dantzig selector[10], etc. There are many othersparse reconstruction methods

such as FOCUSS[11], Sparse Bayesian Learning[12] and BayesianCompressive Sensing[13], etc.

In many real applications such as video compression or dynamic MRI reconstruction, the consec-

utive frames are usually correlated. Thus, when we are considering theproblem of recursive recon-

struction for a time sequence of sparse signals, it is easy to use the correlated information within the

sequence. This gives the motivation of our work which is to causally and recursively reconstruct a time

sequence of signals with slowly changing sparsity pattern. Hence, the goal of this work is to solve the
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sparse recovery problem from a limited number of its linear projections by utilizing the prior infor-

mation. We try to reconstruct anm-length sparse vector,x, with support,N , from ann < m length

noiseless measurement vector,

y := Ax (1.1)

or noisy measurement vector,

y := Ax+ w (1.2)

when the partial and partly erroneous knowledge of the signal’s support, denoted byT , is available.

Then we also study the case when an erroneous estimate of the signal values onT , denoted by(µ̂)T ,

is also available. In (1.2),w is ann-length measurement noise vector andA is ann×m measurement

matrix. For simplicity, in this work, we just refer tox as the signaland toA as the measurement

matrix. However, in general,x is the sparsity basis vector (which is either the signal itself or some

linear transform of the signal) andA = HΦ whereH is the measurement matrix andΦ is the sparsity

basis matrix. IfΦ is the identity matrix thenx is the signal itself.

In practical applications,T andµ̂ may be available from prior knowledge. Alternatively, in appli-

cations requiring recursive reconstruction of (approximately) sparsesignal or image sequences, with

slow time-varying sparsity patterns and slow changing signal values, one can use the support estimate

and the signal value estimate from the previous time instant as the “prior knowledge”. A key domain

where this problem occurs is in fast (recursive) dynamic MRI reconstruction from highly undersampled

measurements. In MRI, we typically assume that the images are wavelet sparse. We show slow support

and signal value change for two medical image sequences in Fig. 1.2. Fromthe figure, we can see that

the maximum support changes for both sequences are less than 2% of the support size and almost all

signal values’ changes are less than0.16% of the signal energy. Slow signal value change also implies

that a signal value is small before it gets removed from the support. Other potential applications in-

clude single-pixel camera based real-time video imaging [14]; video compression; ReProCS (recursive

projected CS) based video denoising or video layering (separating videoin foreground and background

layers) [15, 16]; and spectral domain optical coherence tomography [17] based dynamic imaging.

Recent work on compressive sensing (CS) gives conditions for exact reconstruction [3, 4, 18] and

bounds the error when this is not possible [2, 10]. In this work, we provide the exact reconstruction
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(i) a larynx (vocal tract) image sequence (ii) cardiac image sequence
(a)
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Figure 1.2 In (a), we show two medical image sequences (a cardiac and a larynx
sequence). In (b),xt is the two-level Daubechies-4 2D discrete wavelet
transform (DWT) of the cardiac or the larynx image at timet and the
setNt is its 99% energy support (the smallest set containing 99% of the
vector’s energy). Its size,|Nt| varied between 4121-4183 (≈ 0.07m)
for larynx and between 1108-1127 (≈ 0.06m) for cardiac.Notice that
all support changes are less than 2% of the support size and almost all
signal values changes are less than 4% of‖(xt)Nt‖2.
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conditions in noiseless case for our proposed modified compressive sensing (modified-CS) and regu-

larized modified basis pursuit (reg-mod-BP) and also bound the reconstruction errors for our proposed

modified basis pursuit denoising (mod-BPDN)and regularized modified basis pursuit denoising (reg-

mod-BPDN).

1.1 Notations and Problem Definition

For any setT and vectorb, bT denotes a sub-vector containing the elements ofb with indices inT .

‖b‖k refers to thè k norm of the vectorb. Also,‖b‖0 counts the number of nonzero elements ofb.

The notationT c denotes the set complement ofT , i.e.,T c = {i ∈ [1, ...,m], i /∈ T}. ∅ is the empty

set.

We use′ for transpose. For the matrixA, AT denotes the sub-matrix containing the columns of

A with indices inT . The matrix norm‖A‖p, is defined as‖A‖p , maxx 6=0
‖Ax‖p
‖x‖p . IT is an identity

matrix on the set of rows and columns indexed by elements inT . 0T,S is a zero matrix on the set of

rows and columns indexed by elements inT andS respectively.

b � 0 (b � 0) means that each element of the vectorb is greater than or equal to (strictly greater

than) zero. Similarlyb � 0 (b ≺ 0) means each element is less than or equal to (strictly less than) zero.

We define the sign pattern, sgn(b) as: [sgn(b)]i = bi/|bi| if bi 6= 0 and[sgn(b)]i = 0 if bi = 0.

The notation∇L(b) denotes the gradient of the functionL(b) with respect tob.

When we sayb is supported onT ∪ S we mean that the support ofb (set of indices whereb is

nonzero, denoted as supp(b)) is a subset ofT ∪ S.

TheS-restricted isometry constant [18],δS , for a matrix,A, is defined as the smallest real number

satisfying

(1− δS)‖c‖22 ≤ ‖AT c‖22 ≤ (1 + δS)‖c‖22 (1.3)

for all subsetsT ⊂ [1, n] of cardinality |T | ≤ S and all real vectorsc of length |T |. The restricted

orthogonality constant [18],θS1,S2 , is defined as the smallest real number satisfying

|c1′AT1
′AT2c2| ≤ θS1,S2‖c1‖2‖c2‖2 (1.4)
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for all disjoint setsT1, T2 ⊂ [1, n] with |T1| ≤ S1, |T2| ≤ S2 andS1 + S2 ≤ n, and for all vectorsc1,

c2 of length|T1|, |T2| respectively. By settingc1 ≡ AT1
′AT2c2 in (1.4),

‖AT1
′AT2‖ ≤ θS1,S2 (1.5)

Our goal is to reconstruct a sparse vector,x, with support,N , from the measurement vector,y

satisfying (1.1) or (1.2). We assume partial knowledge of the support, denoted byT , and of the signal

estimate onT , denoted by(µ̂)T . The support estimate may contain errors – misses∆ and extras∆e.

1.2 Related Work

The sparse reconstruction problem, without using any support or signal value knowledge, has been

studied for a long time [18, 3, 4, 1, 2, 19, 10, 5]. It tries to find the sparsest signal among all signals that

satisfy the data constraint, i.e. it solvesminb ‖b‖0 s.t. y = Ab. This brute-force search has exponential

complexity. One class of practical approaches to solve this isbasis pursuit (BP)which replaces‖b‖0 by

‖b‖1 [1]. The`1 norm is the closest norm tò0 that makes the problem convex. Therefore, for noiseless

measurements, BP solves

min
b

‖b‖1 s.t. y = Ab (1.6)

Exact reconstruction conditions are obtained in [18, 3, 4, 19]. For noisy measurements, the data con-

straint becomes an inequality constraint. However, this assumes that the noise is bounded and the

noise bound is available. In practical applications where this may not be available, one can use the

Lagrangian version which solves

min
b

γ‖b‖1 +
1

2
‖y −Ab‖22 (1.7)

This is calledbasis pursuit denoising (BPDN) [1]. Since this solves an unconstrained optimization

problem, it is also faster. An error bound of BPDN was obtained in [2]. Error bounds for its constrained

version were obtained in [19, 20].

Very recent work on causal sparse reconstruction for time sequences includes [21] (focusses on the

time-invariant support case) and [22, 23] (use past estimates to only speed up the current optimization

but not to improve reconstruction error). The problem of sparse reconstruction with partial support
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knowledge was introduced in our work [24, 25]; and also in parallel in Khajehnejad et al [26] and in

vonBorries et al [27]. In [24, 25], we proposed an approach called modified-CSwhich tries to find

the signal that is sparsest outside the setT and satisfies the data constraint. We presented our solution

using convex relations approaches. We obtained exact reconstructionconditions for it by using the

restricted isometry approach [18]. When measurements are noisy, for thesame reasons as above, one

can use the Lagrangian versionmodified-BPDN (mod-BPDN). Its error was bounded in our work [28],

while the error of its constrained version was bounded in Jacques [29].Also, some later work based

on our suggested methods include [30] ( which used the same idea of modified-CS but implemented

using greedy algorithm OMP) and [31] (which iteratively used the support estimate from modified-CS

reconstruction at each iteration).

In [26], Khajehnejad et al assumed a probabilistic support prior and proposed a weighted̀1 solu-

tion. They also obtained exact reconstruction thresholds for weighted`1 by using the overall approach

of Donoho [32]. It solves:

min
b
‖bT c‖1 + γ‖bT ‖1 s.t. y = Ab (1.8)

for noiseless measurements or

min
b

γ‖bT c‖1 + γ′‖bT ‖1 +
1

2
‖y −Ab‖22 (1.9)

for noisy measurements.

Another related work is calledCS-residual or CS-diffwhich computes

x̂ = µ̂+ b̂, whereb̂ solves

min
b
‖b‖1 s.t. y = Ab (noiseless) (1.10)

min
b

γ‖b‖1 +
1

2
‖y −Aµ̂−Ab‖22 (noisy) (1.11)

This has the following limitation. It does not use the fact that whenT is an accurate estimate of the

true support,(x)T c is much more sparse compared with the full(x− µ̂) (the support size ofxT c is |∆|

while that of(x− µ̂) is |T |+ |∆| which is much larger). The exception is if the signal value prior is so

strong that(x− µ̂) is zero (or very small) on all or a part ofT .

CS-residual is also related to LS-CS and KF-CS [33, 34]. LS-CS solves(1.10) or (1.11) but with

µ̂T being the LS estimate computed assuming that the signal is supported onT and with(µ̂)T c = 0.
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For a static problem, KF-CS can be interpreted as computing the regularized LS estimate onT and

using that aŝµT . LS-CS and KF-CS also have a limitation similar to CS-residual.

There are some other CS-based methods used in the application of MRI reconstruction. The appli-

cation of CS to MRI was first developed in detail in [35]. The most straightforward application of CS to

fMRI images reconstruction would be to perform CS on each slice of data independently (simple-CS).

For time sequences, batch-CS [36] improves simple-CS by jointly reconstructing the entire sequence

by treating it as a 3D sparse signal. Because it uses sparsity also along thetime axis, it is able to achieve

accurate reconstructions using much fewer measurements than simple-CS. But the reconstruction can

only be performed on the entirebatchof data after all sampling is completed. Also, for anl-frame

acquisition, its computational complexity is roughlyl2 times that of simple-CS, while its memory re-

quirement isl times that of simple-CS. In recent work, [37, 38] proposed Kt-FOCUSS,which uses

the fact that a sequence of MR image data is sparse in they − f domain wheref denotes temporal

frequency. The key idea is to reconstructkY − t “frames” using FOCUSS[39] wherekY denotes the

phase encoding direction (y-axis of the 2D discrete Fourier transform (DFT) plane). Kt-FOCUSS is

still a batch method, which means it is still (a) non-causal, i.e. it needs to wait to acquire the entire

l frame sequence before doing the reconstruction (or one needs to re-run it in a batch fashion again

at each time which is slow), and (b) its memory requirement is stilll times that of simple-CS. But its

reconstruction is fast because it is done on onekY − t “frame” at a time and because often it only runs

a a few iterations of FOCUSS starting from previous “frame” as initial guess. The same memory and

non-causality issues also remain with Kt-FOCUSS with motion compensation (MC) [37].

1.3 Dissertation Organization

The dissertation is organized as follows. Exact recovery of Modified-CS and Reg-mod-BP for

noiseless measurements and their sufficient conditions for exact reconstruction are introduced in Chap-

ter 2. The error bounds for Mod-BPDN and Reg-mod-BPDN for noisy measurements are discussed in

Chapter 3. The application of our algorithms in functional MRI to detect active regions is demonstrated

in Chapter 4. Finally, conclusions are summarized in Chapter 5.
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CHAPTER 2. Sparse Reconstruction for Noiseless Measurements with Partial Support

and Signal Knowledge

In this chapter, we discuss the problem of reconstructing from noiselessmeasurements when partial

support are signal knowledge are known.[24, 40, 25, 41] We first introduce modified-CS when only

partial support is known. Then we discuss regularized modified-BP when the signal estimate is also

available.

2.1 Modified-CS for problems with partially known support

We measure anm-length vectory where

y := Ax (2.1)

We need to estimatex which is a sparsen-length vector withn > m. The support ofx, denotedN ,

can be split asN = T ∪∆ \∆e whereT is the “known” part of the support,∆e := T \N is the error

in the the known part and∆ := N \ T is the unknown part. Thus,∆e ⊆ T , ∆, T are disjoint and

|N | = |T |+ |∆| − |∆e|.

We uses := |N | to denote the size of the (s)upport,k := |T | to denote the size of the (k)nown part

of the support,e = |∆e| to denote the size of the (e)rror in the known part andu = |∆| to denote the

size of the (u)nknown part of the support.

We assume thatA satisfies theS-restricted isometry property (RIP) [18] forS = (s + e + u) =

(k + 2u). S-RIP means thatδS < 1 whereδS is the RIP constant forA defined in (1.3).

In a static problem,T is available from prior knowledge. For example, in the MRI problem de-

scribed in the introduction, letN be the (unknown) set of all DWT coefficients with magnitude above

a certain zeroing threshold. Assume that the smaller coefficients are set to zero. Prior knowledge tells
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us that most image intensities are nonzero and so the approximation coefficients are mostly nonzero.

Thus we can letT be the (known) set of indices of all the approximation coefficients. The (unknown)

set of indices of the approximation coefficients which are zero form∆e. The (unknown) set of indices

of the nonzero detail coefficients form∆.

For the time series problem,y ≡ yt andx ≡ xt with support,Nt = T ∪∆ \∆e, andT = N̂t−1 is

the support estimate from the previous time instant. If exact reconstruction occurs att− 1, T = Nt−1.

In this case,∆e = Nt−1 \Nt is the set of indices of elements that were nonzero att − 1, but are now

zero (deletions) while∆ = Nt \ Nt−1 is the newly added coefficients att (additions). Slow sparsity

pattern change over time, e.g. see Fig. 1.2, then implies thatu ≡ |∆| ande ≡ |∆e| are much smaller

thans ≡ |N |.

When exact reconstruction does not occur,∆e includes both the current deletions and the extras

from t − 1, N̂t−1 \Nt−1. Similarly,∆ includes both the current additions and the misses fromt − 1,

Nt−1 \ N̂t−1. In this case, slow support change, along withN̂t−1 ≈ Nt−1, still implies thatu� s and

e� s.

2.1.1 Modified-CS

Our goal is to find a signal that satisfies the data constraint given in (1.1) and whose support contains

the smallest number of new additions toT , although it may or may not contain all elements ofT . In

other words, we would like to solve

min
b
‖(b)T c‖0 s.t. y = Ab (2.2)

If ∆e is empty, i.e. ifN = T ∪∆, then the solution of (2.2) is also the sparsest solution whose support

containsT .

As is well known, minimizing thè 0 norm is a combinatorial optimization problem [42]. We

propose to use the same trick that resulted in CS [1, 3, 4, 2]. We replace the`0 norm by thè 1 norm,

which is the closest norm tò0 that makes the optimization problem convex, i.e. we solve

min
b
‖(b)T c‖1 s.t. y = Ab (2.3)
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Denote its output bŷx. If needed, the support is estimated as

N̂ := {i ∈ [1, n] : (x̂)2i > α} (2.4)

whereα ≥ 0 is a zeroing threshold. If exact reconstruction occurs,α can be zero. We discuss threshold

setting for cases where exact reconstruction does not occur in Chapter 2.1.2.3.

2.1.2 Exact Reconstruction Result

We first analyze thè0 version of modified-CS in Chapter 2.1.2.1. We then give the exact recon-

struction result for the actual`1 problem in Chapter 2.1.2.2.

2.1.2.1 Exact Reconstruction Result:̀ 0 version of modified-CS

Consider thè0 problem, (2.2). Using a rank argument similar to [18, Lemma 1.2] we can show the

following. The proof is given in the Appendix.

Proposition 1 Given a sparse vector,x, with support,N = T ∪∆ \∆e, where∆ andT are disjoint

and∆e ⊆ T . Consider reconstructing it fromy := Ax by solving (2.2).x is the unique minimizer of

(2.2) if δk+2u < 1 (A satisfies the(k + 2u)-RIP).

Usingk = s+ e− u, this is equivalent toδs+e+u < 1. Compare this with [18, Lemma 1.2] for the

`0 version of CS. It requiresδ2s < 1 which is much stronger whenu� s ande� s, as is true for time

series problems.

2.1.2.2 Exact Reconstruction Result: modified-CS

Of course we do not solve (2.2) but its`1 relaxation, (2.3). Just like in CS, the sufficient conditions

for this to give exact reconstruction will be slightly stronger. In the next few subsections, we prove the

following result.

Theorem 1 (Exact Reconstruction)Given a sparse vector,x, whose support,N = T ∪∆\∆e, where

∆ andT are disjoint and∆e ⊆ T . Consider reconstructing it fromy := Ax by solving (2.3).x is the

unique minimizer of (2.3) if
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1. δk+u < 1 andδ2u + δk + θ2k,2u < 1 and

2. ak(2u, u) + ak(u, u) < 1 where

ak(S, š) ,
θš,S +

θš,k θS,k
1−δk

1− δS −
θ2
S,k

1−δk

(2.5)

The above conditions can be rewritten usingk = s+ e− u.

We will not give the proof of Theorem 1 since it is a special case for reg-mod-BP and this theorem

can be obtained by proving the exact reconstruction of reg-mod-BP. Tounderstand the second con-

dition better and relate it to the corresponding CS result, let us simplify it.ak(2u, u) + ak(u, u) ≤
θu,2u+θu,u+

θ22u,k+θ2
u,k

1−δk

1−δ2u−
θ2
2u,k

1−δk

. Simplifying further, a sufficient condition forak(2u, u) + ak(u, u) < 1 is

θu,2u + θu,u +
2θ22u,k+θ2u,k

1−δk
+ δ2u < 1. Further, a sufficient condition for this isθu,u + δ2u + θu,2u +

δk + θ2u,k + 2θ22u,k < 1.

To get a condition only in terms ofδS ’s, use the fact thatθS,š ≤ δS+š [18]. A sufficient condition

is 2δ2u + δ3u + δk + δ2k+u + 2δ2k+2u < 1. Further, notice that ifu ≤ k and if δk+2u < 1/5, then

2δ2u + δ3u + δk + δ2k+u + 2δ2k+2u < 4δk+2u + δk+2u(3δk+2u) ≤ (4 + 3/5)δk+2u < 23/25 < 1.

Corollary 1 (Exact Reconstruction) Given a sparse vector,x, whose support,N = T ∪ ∆ \ ∆e,

where∆ andT are disjoint and∆e ⊆ T . Consider reconstructing it fromy := Ax by solving (2.3).

• x is the unique minimizer of (2.3) ifδk+u < 1 and

(δ2u + θu,u + θu,2u) + (δk + θ2k,u + 2θ2k,2u) < 1 (2.6)

• This, in turn, holds if

2δ2u + δ3u + δk + δ2k+u + 2δ2k+2u < 1.

• This, in turn, holds ifu ≤ k and

δk+2u < 1/5.
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These conditions can be rewritten by substitutingk = s+ e− u.

Compare (2.6) to the sufficient condition for CS given in [18]:

δ2s + θs,s + θs,2s < 1 (2.7)

As shown in Fig. 1.2, usuallyu � s, e � s andu ≈ e (which means thatk ≈ s). Under this

assumption, compare (2.6) with (2.7). The first bracket of (2.6) will be small compared to the left hand

side (LHS) of (2.7), particularly whens/m is larger. Also, ifθk,2u < 1/2 (requiress/m to not be too

large), then each term of the second bracket will also be smaller than the LHS of (2.6). The last two

terms of the second bracket areθ2 terms, which makes them even smaller. Thus, for a certain range of

values ofs/m, the LHS of (2.6) will be small compared to that of (2.7). Sinceδ, θ are non-increasing

in m, this means that, ifu, e are small enough, (2.6) can hold for much smaller values ofm than (2.7),

i.e. exact reconstruction with modified-CS can be guaranteed for smaller values ofm than what is

needed for CS.A detailed comparison is done in Chapter 2.3.1.1.

2.1.2.3 Dynamic Modified-CS: Modified-CS for Recursive Reconstruction of Signal Sequences

The most important application of modified-CS is for recursive reconstruction of time sequences

of sparse or compressible signals. To apply it to time sequences, at each timet, we solve (2.3) with

T = N̂t−1 whereN̂t−1 is the support estimate fromt−1 and is computed using (2.4). Att = 0 we can

either initialize with CS, i.e. setT to be the empty set, or with modified-CS withT being the support

available from prior knowledge, e.g. for wavelet sparse images,T could be the set of indices of the

approximation coefficients. The prior knowledge is usually not very accurate and thus att = 0 one

will usually need more measurements i.e. one will need to usey0 = A0x0 whereA0 is anm0 × n

measurement matrix withm0 > m. The full algorithm is summarized in Algorithm 1.

Setting the support estimation threshold,α. If m is large enough for exact reconstruction,α can

be zero. In case of very accurate reconstruction, if we setα to be slightly smaller than the magnitude

of the smallest element of the support (if that is roughly known), it will ensure zero misses and fewest

false additions. Asm is reduced further (error increases),α should be increased further to prevent too

many false additions.
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For compressible signals, one should do the above but with support replaced by theβ%-support,

i.e.α should be equal to/slightly smaller than the magnitude of the smallest element of theβ%-support.

β%-support is defined as below.

Definition 1 (β%-energy support orβ%-support) For sparse signals, clearly the support isN :=

{i ∈ [1, n] : x2i > 0}. For compressible signals, we misuse notation slightly and letN be theβ%-

support, i.e. N := {i ∈ [1, n] : x2i > ζ}, whereζ is the largest real number for whichN contains at

leastβ% of the signal energy, e.g.β = 99 in Fig. 1.2.

Chooseβ so that, with the givenm, the elements of theβ%-support are accurately reconstructed.

Alternatively, one can use the approach proposed in [43, Section II].First, only detect additions to

the support using a small threshold (or keep adding largest elements intoT as long asAT remains well-

conditioned), then compute an LS estimate on that support and then use this LSestimate to perform

support deletion using a larger threshold,α, selected as above. If there are few misses in the support ad-

dition step, the LS estimate will have lower error than the output of modified-CS,thus making deletion

accurate even with a larger threshold.

Algorithm 1 Dynamic Modified-CS

At t = 0, computex̂0 as the solution ofminb ‖(b)T c‖1, s.t.y0 = A0b, whereT is either empty or is
available from prior knowledge. ComputêN0 = {i ∈ [1, n] : (x̂0)

2
i > α}.

For t > 0, do

1. Modified-CS.Let T = N̂t−1. Computêxt as the solution ofminb ‖(b)T c‖1, s.t.yt = Ab.

2. Estimate the Support.N̂t = {i ∈ [1, n] : (x̂t)
2
i > α}.

3. Output the reconstruction̂xt.

FeedbackN̂t, incrementt, and go to step 1.

2.2 Regularized Modified-BP for Noiseless Sparse Reconstruction with Partial

Erroneous Support and Signal Value Knowledge

In previous section, we discussed modified-CS which only uses the partiallyknown support for

reconstruction. In this section, we study the case when both the partial support and also the signal

estimate on it are available. Our goal is to solve the sparse reconstruction problem, i.e. reconstruct an
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m-length sparse vector,x, with support,N , from ann < m length measurement vector,

y := Ax, (2.8)

when an erroneous estimate of the signal’s support, denoted byT ; and an erroneous estimate of the

signal values onT , denoted by(µ̂)T , are available. The support estimate,T , can be rewritten as

T , N ∪∆e \∆ where∆ contains the misses while∆e contains the extras in the support estimate.

The signal value estimate is assumed to be zero alongT c, i.e.,

µ̂ =







(µ̂)T

0T c






(2.9)

and it satisfies

(µ̂)T = (x)T + ν, with ‖ν‖∞ ≤ ρ. (2.10)

Recall the following functions of the RIC and ROC ofA in previous section:

ak(s, š) ,
θš,s +

θš,k θs,k
1−δk

1− δs −
θ2
s,k

1−δk

(2.11)

Kk(u) ,

√
1 + δu

1− δu −
θ2
u,k

1−δk

(2.12)

For the matrixA, and for any setS for whichAS
′AS is full rank, we define the matrixM(S) as

M(S) , I −AS(AS
′AS)

−1AS
′ (2.13)

2.2.1 Regularized Modified Basis Pursuit

Mod-CS given in (2.3) puts no cost onbT and no explicit constraint excepty = Ab. Thus, when

very few measurements are available,bT can become larger than required in order to satisfyy = Ab

with the smallest‖bT c‖1. A similar, though less, bias will also occur with (1.8) whenγ < 1. However,

if a signal value estimate onT , (µ̂)T , is also available, one can use that to constrainbT . One way to do

this, is to addλ‖bT − µ̂T ‖22 to the mod-CS cost. However, as we saw from simulations, while this does

achieve lower reconstruction error, it cannot achieve exact recovery with fewer measurements (smaller
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n) than mod-CS [25]. The reason is it puts a cost on the entire`2 distance from̂µT and so encourages

elements on the extras set,∆e, to be closer to(µ̂)∆e which is nonzero.

On the other hand, if we instead use the`∞ distance from̂µT , and add it as a constraint, then, at

least in certain situations, we can achieve exact recovery with a smallern than mod-CS. Thus, we study

min
b
‖bT c‖1, s.t. y = Ab and‖bT − µ̂T ‖∞ ≤ ρ (2.14)

and call it reg-mod-BP. We see from simulations, thatwhenever one or more of the inequality con-

straints are active, i.e.|bi − µ̂i| = ρ for somei ∈ T , (2.14) does achieve exact recovery with fewer

measurements than mod-CS. We use this observation to derive a better exact recovery result below1.

2.2.2 Exact Reconstruction Conditions

In this section, we obtain exact reconstruction conditions for reg-mod-BPby exploiting the above

fact. We give the result and discuss its implications below in Chapter 2.2.2.1. The key lemmas leading

to its proof are given in Chapter 2.2.2.2 and the proof outline in Chapter 2.2.2.3.

2.2.2.1 Exact Reconstruction Result

Let us begin by defining the two types of active sets (set of indices for which the inequality con-

straint is active),Ta+ andTa-, and the inactive set,Tin, as follows.

Ta+ , {i ∈ T : xi − µ̂i = ρ}

Ta- , {i ∈ T : xi − µ̂i = −ρ}

Tin , {i ∈ T : |xi − µ̂i| < ρ} (2.15)

In the result below, we try to find the setsTa+g⊆ Ta+ andTa-g⊆ Ta- so that|Ta+g|+ |Ta-g| is maximized

while Ta+g andTa-g satisfy certain constraints. We call these the “good” sets. We define the “bad”

subset ofT , asTb := T \ (Ta+g∪ Ta-g). As we will see, the smaller the size of this bad set, the weaker

are our exact recovery conditions.

1One can also try to constrain the`2 distance instead of thè∞ distance. When thè2 constraint is active, one should
again need a smallern for exact recovery. When we check this via simulations, this does happen, but since it is at most one
active constraint, the reduction inn required is small compared to what is achieved by (2.14) and hence wedo not study this
further.
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Theorem 2 (Exact Recovery Conditions)Consider recovering a sparse vector,x, with supportN ,

from y := Ax by solving (2.14). The support estimate,T , and the misses and extras in it,∆, ∆e,

satisfyT , N ∪ ∆e \ ∆. The signal estimate,̂µ, satisfies (2.10), i.e.‖xT − µ̂T ‖∞ ≤ ρ. Recall the

sizes of the setsT and∆ are defined as

k := |T |, u := |∆|. (2.16)

The truex is the unique minimizer of (2.14) if

1. δk+u < 1, δ2u + δk + θ2k,2u < 1, and

2. ak(2u, u) + akb(u, u) < 1 wherekb := |Tb|,

Tb , T \ (Ta+g ∪ Ta-g), and

{Ta+g, Ta-g} = arg max
T̃a+g,T̃a-g

(|T̃a+g|+ |T̃a-g|) subject to

T̃a+g ⊆ Ta+, T̃a-g ⊆ Ta-,

Ai
′w > 0 ∀ i ∈ T̃a+g, andAi

′w < 0 ∀ i ∈ T̃a-g (2.17)

where

w , M(T̃b)A∆(A∆
′M(T̃b)A∆)

−1sgn(x∆),

T̃b , T \ (T̃a+g ∪ T̃a-g),

M(S) is specified in (2.13),ak(s, š) is defined in (2.11), and the setsTa+, Ta- are defined in

(2.15).�

Notice thatak(s, š) is a non-decreasing function ofk. Sincekb = k − |Ta+g| − |Ta-g|, thus, finding

the largest possible setsTa+g andTa-g ensures that the conditionak(2u, u) + akb(u, u) < 1 is the

weakest. The reason for definingTa+g andTa-g in the above fashion will become clear in the proof of

Lemma 2.

Notice also that the first condition of the above result ensures thatδk < 1. Since|T̃b| ≤ k, thus,

AT̃b

′AT̃b
is positive definite and thus invertible. ThusM(T̃b) is always well defined. The first condition

also ensures thatak(2u, u) > 0. Sincekb ≤ k, and sinceδs andθs1,s2 are non-decreasing functions of

s, s1, s2, it also ensures thatakb(u, u) > 0.
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Remark 1 (Computation complexity) Finding the bestTa+g andTa-g requires that one check all pos-

sible subsets ofTa+ andTa- and find the pair with the largest sum of sizes that satisfies (2.17). To do

this, one would start with̃Ta+g = Ta+, T̃a-g = Ta-; computeT̃b andw and check if (2.17) holds; if it

does not, remove one element from̃Ta+g and then check (2.17); then remove an element fromT̃a-g and

check (2.17); keep doing this until one finds a pair for which (2.17) holds.In the worst case, one will

need to check (2.17)2|Ta+|+|Ta-| times. However, the complexity of computing the RICδ|T | or any of the

ROC’s is anyway exponential in|T | and |T | ≥ |Ta+| + |Ta-|. In summary, computing the conditions

of Theorem 2 has complexity that is exponential in the support size, but the same is true for all sparse

recovery results that use the RIC. We should mention though that, for certain random matrices, e.g.

random Gaussian, there are results that upper bound the RIC values withhigh probability, e.g. see

[18]. However, the resulting bounds are usually quite loose.

Remark 2 (Applicability) A practical case where some of the inequality constraints will be active

with nonzero probability is when dealing with quantized signals and quantized signal estimates. If the

range of values that the signal estimate can take given the signal (or vice versa) is known, the smallest

choice ofρ is easily computed. We show some examples in Chapter 2.3. In general, even if just the

range of values both can take is known, we can computeρ. The fewer the number values thatxi − µ̂i

can take, the larger will be the expected size of the active set,Ta := Ta+ ∪ Ta-. Also, the condition

(2.17) will hold for non-emptyTg := Ta+g ∪ Ta-g with positive probability, e.g. in our simulations (see

Tables 2.3, 2.4), the average size of the good setTg was about half the average size of the active setTa.

Some real applications where quantized signals and signal estimates occur are recursive CS based

video compression [44, 45] (the original video itself is quantized) or in recursive projected CS (Re-

ProCS) [15, 16] based moving or deforming foreground objects’ extraction (e.g. a person moving

towards a camera) from very large but correlated noise (e.g. very similar looking but slowly changing

backgrounds), particularly when the videos are coarsely quantized (low bit rate). A common example

where low bit rate videos occur is mobile telephony applications. In any of these applications, if we

know a bound on the maximum change of the sparse signal’s value from one time instant to the next,

that can serve asρ.

Remark 3 (Comparison with BP, mod-CS, other results)The worst case for Theorem 2 is when both
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the setsTa+g andTa-g are empty either because no constraint is active (Ta+ andTa- are both empty)

or because (2.17) does not hold for any pair of subsets ofTa+ andTa-. In this case, we havekb = k

and so the required sufficient conditions are the same as those of mod-CS (Theorem 1). A small extra

requirement is thatx satisfies (2.10). Thus, in the worst case, Theorem 2 holds under the same condi-

tions onA (needs the same number of measurements) as mod-CS. In previous section, we have already

argued that the mod-CS result holds under weaker conditions than the results for BP [18, 19] as long

as the size of the support errors,|∆|, |∆e|, are small, and hence the same can be said about Theorem 2.

Small|∆|, |∆e| is a valid assumption in recursive recovery applications like recursive dynamic MRI,

recursive CS based video compression, or ReProCS based foreground extraction from large but corre-

lated background noise.

Moreover, if some inequality constraints are active and (2.17) holds, as incase of quantized signals

and signal estimates, Theorem 2 holds under weaker conditions onA than the mod-CS result.

Remark 4 (Small reconstruction error) The reconstruction error of reg-mod-BP is significantly smaller

than that of mod-CS, weighted̀1 or BP, even when none of the constraints is active, as long asρ is

small (see Table 2.5). On the other hand, the exact recovery conditionsdo notdepend on the value of

ρ, but only on the size of the good subsets of the active sets. This is also observed in our simulations.

In Table 2.5, we show results forρ = 0.1. Even when we triedρ = 0.5, the exact reconstruction

probability or the smallestn needed for exact reconstruction remained the same, but the reconstruction

error increased.

2.2.2.2 Proof of Theorem 2: Key Lemmas

Our overall proof strategy is similar to that of [18] for BP. We first find a set of sufficient conditions

on ann× 1 vector,w, that help ensure thatx is the unique minimizer of (2.14). This is done in Lemma

1. Next, we find sufficient conditions that the measurement matrixA should satisfy so that one suchw

can be found. This is done in an iterative fashion in the theorem’s proof. The proof uses Lemma 2 at

the zeroth iteration, followed by applications of Lemma 3 at later iterations.

To obtain the sufficient conditions onw, as suggested in [18], we first write out the Karush-Kuhn-

Tucker (KKT) conditions forx to bea minimizer of (2.14) [46, Chapter 5]. By strengthening these a
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little, we get a set ofsufficientconditions forx to bethe uniqueminimizer. The necessary conditions

for x to be a minimizer are: there exists ann × 1, vectorw (Lagrange multiplier for the constraints in

y = Ax), a |Ta+| × 1 vector,λ1, and a|Ta-| × 1 vector,λ2, such that (s.t.)

1. every element ofλ1 andλ2 is non-negative, i.e.λ1 � 0 andλ2 � 0,

2. ATin
′w = 0, ATa+

′w = λ1, ATa-
′w = −λ2, A∆

′w = sgn(x∆), and‖A(T∪∆)c
′w‖∞ ≤ 1.

As we will see in the proof of Lemma 1, strengthening‖A(T∪∆)c
′w‖∞ ≤ 1 to ‖A(T∪∆)c

′w‖∞ <

1, keeping the other conditions the same, and requiring thatδk+u < 1 gives us a set ofsufficient

conditions.

Lemma 1 Letx be as defined in Theorem 2.x is the unique minimizer of (2.14) ifδk+u < 1 and if we

can find ann× 1 vector,w, s.t.

1. ATin
′w = 0, ATa+

′w � 0, ATa-
′w � 0,

2. A∆
′w = sgn(x∆),

3. |Aj
′w| < 1 for all j /∈ T ∪∆

Recall thatTa+, Ta- andTin are defined in (2.15) andk, u in Theorem 2.�

Proof: The proof is given in Appendix A.2.

Next, we try to obtain sufficient conditions on the measurement matrix,A (on its RIC’s and ROC’s)

to ensure that such aw can be found. This is done by using Lemmas 2 and 3 given below. Lemma 2

helps ensure that the first two conditions of Lemma 1 hold and provides the starting point for ensuring

that the third condition also holds. Then, Lemma 3 applied iteratively helps ensure that the third

condition also holds.

Lemma 2 Assume thatk + u ≤ m. Let š be such thatk + u + š ≤ m. If δu + δkb + θ2kb,u < 1, then

there exists ann× 1 vectorw̃ and an “exceptional” set,E, disjoint withT ∪∆, s.t.

1. ATb

′w̃ = 0, ATa+g
′w̃ � 0, ATa-g

′w̃ ≺ 0,

2. A∆
′w̃ = sgn(x∆),



www.manaraa.com

21

3. |E| < š, ‖AE
′w̃‖2 ≤ akb(u, š)

√
u, |Aj

′w̃| ≤ akb (u,š)√
š

√
u ∀j /∈ T ∪∆ ∪ E,

4. ‖w̃‖2 ≤ Kkb(u)
√
u.

Recall thatak(s, š), Kk(s) are defined in (2.11), (2.12) andTa+g, Ta-g, Tb, kb, k andu in Theorem 2.

�

Notice that because we have assumed thatδu + δkb + θ2kb,u < 1, akb(u, š) andKkb(u) are positive.

We call the setE an “exceptional” set, because except on the setE ⊆ (T ∪∆)c, everywhere else on

(T ∪ ∆)c, |Aj
′w̃| is bounded. This notion is taken from [18]. Notice that the first two conditions of

the above lemma are one way to satisfy the first two conditions of Lemma 1 sinceTb = Tin ∪ (Ta+ \

Ta+g) ∪ (Ta- \ Ta-g).

Proof: The proof is given in Appendix A.3. We let̃w = M(Tb)A∆(A∆
′M(Tb)A∆)

−1sgn(x∆).

Since the good setsTa+g, Ta-g are appropriately defined (see (2.17)), the first two conditions hold. The

rest of the proof bounds‖w̃‖2, and finds the setE ⊆ (T ∪∆)c of size|E| < š so that|Aj
′w̃| is bounded

for all i /∈ T ∪∆ ∪ E and also‖AE
′w̃‖2 is bounded.

Lemma 3 Assume thatk ≤ m. Lets, š be such thatk + s+ š ≤ m. Assume thatδs + δk + θ2k,s < 1.

LetTd be a set that is disjoint withT , of size|Td| ≤ s and letc be a|Td| × 1 vector. Then there exists

ann× 1 vector,w̃, and a set,E, disjoint withT ∪ Td, s.t. (i)AT
′w̃ = 0, (ii) ATd

′w̃ = c, (iii) |E| < š,

‖AE
′w̃‖2 ≤ ak(s, š)‖c‖2, |Aj

′w̃| ≤ ak(s,š)√
š
‖c‖2, ∀j /∈ T ∪ Td ∪ E, and (iv)‖w̃‖2 ≤ Kk(s)‖c‖2.

Recall thatak(s, š), Kk(s) are defined in (2.11), (2.12), andk, u in Theorem 2.�

Proof: The proof of this lemma is given in Appendix A.4.

Notice that because we have assumed thatδs + δk + θ2k,s < 1, ak(s, š) andKk(s) are positive.

2.2.2.3 Proof Outline of Theorem 2

We give only the outline here and the complete proof is given in the Appendix A.5. At iteration

zero, we apply Lemma 2 witȟs ≡ u, to get aw1 and an exceptional setTd,1, disjoint withT ∪∆, of

size less thanu. Lemma 2 can be applied becausekb ≤ k and condition 1 of the theorem holds. At

iterationr > 0, we apply Lemma 3 withTd ≡ ∆ ∪ Td,r (so thats ≡ 2u), c∆ ≡ 0, cTd
≡ ATd

′wr and



www.manaraa.com

22

š ≡ u to get awr+1 and an exceptional setTd,r+1 disjoint withT ∪∆∪Td,r of size less thanu. Lemma

3 can be applied because condition 1 of the theorem holds. Definew ,
∑∞

r=1(−1)r−1wr. We then

argue that if condition 2 of the theorem holds,w is well-defined and satisfies the conditions of Lemma

1. Applying Lemma 1, the result follows.

2.2.3 Reconstruction Error Bound

When exact reconstruction cannot be achieved, we want to bound the error of h = x̂ − x. We

adapt the approach of [19, 29] to bound the`2 norm of the error‖h‖2. First consider modCS, i.e. (2.3).

When exact reconstruction condition does not hold, the following lemma provides one way to bound

the error.

Lemma 4 Pick a ∆̃ ⊆ ∆ and a T̃ ⊆ T such thatδ|T̃ |+2|∆̃| <
√
2 − 1. Denotex̂ as the unique

minimizer of (2.3), then

‖x− x̂‖2 ≤
1− δ|T̃ |+2|∆̃|

1− (
√
2 + 1)δ|T̃ |+2|∆̃|

·
2‖x(T̃∪∆̃)c‖1
√

˜|∆|
(2.18)

As long as the truex is always part of the feasible set of (2.14), i.e. as long as‖xT − µT ‖∞ ≤ ρ, the

above lemma also holds for reg-mod-BP. In the next lemma we also use this priorconstraint to obtain

another error bound for reg-mod-BP, which is tighter than that of Lemma 4 whenρ is small enough,

i.e. prior information is strong.

Lemma 5 Let x̂ solve (2.14) and‖xT − µT ‖∞ ≤ ρ. If δ2u ≤
√
2− 1 andδk+2u < 1 hold, then

‖x− x̂‖2 ≤ (
2
√
kδk+2u

1− (
√
2 + 1)δ2u

+ 2)ρ (2.19)

Combining the above two lemmas, we have the following Theorem to bound the error for reg-mod-BP.

Theorem 3 (Reconstruction Error Bound) Let x̂ solve (2.14). If‖xT − µT ‖∞ ≤ ρ and if δ2u ≤
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√
2− 1 andδk+2u < 1, then

‖x− x̂‖2 ≤ min{B1, B2}, where

B1 , (
2
√
kδk+2u

1− (
√
2 + 1)δ2u

+ 2)ρ

B2 , min
T̃ ⊆ T, ∆̃ ⊆ ∆

δ
|T̃ |+2|∆̃|

<
√
2 − 1

1− δ|T̃ |+2|∆̃|
1− (

√
2 + 1)δ|T̃ |+2|∆̃|

·
2‖x(T̃∪∆̃)c‖1
√

˜|∆|

The complete proof is in the Appendix A.5.1. Clearly the bound for modCS isB2 since modCS

is a special case of reg-mod-BP whenρ = ∞ andB1 = ∞ in this case. Therefore, reg-mod-BP

bound, which ismin{B1, B2}, will never be larger than modCS bound. One particular case is when

δk+2u <
√
2−1 and in this caseB2 = 0 which implies that exact reconstruction occurs for both modCS

and reg-mod-BP. However, when the number of measurements is very small,δk+2u will be much larger

than
√
2 − 1. Thus,|T̃ | and |∆̃| in modCS boundB2 must be small such thatδ|T̃ |+2|∆̃| <

√
2 − 1.

However, the set(T̃ ∪ ∆̃)c becomes larger resulting in
‖x(T̃∪∆̃)c‖1√

˜|∆|
to be very large. Hence, modCS

bound will be very large. But for reg-mod-BP, if the signal estimateµT is good which allows a small

ρ, thenB1 � B2 resulting a much smaller bound than modCS.

2.2.4 Variation of Regularized Modified-BP

So far we have studied the exact recovery conditions for reg-mod-BP.As we stated in the beginning

of this chapter, we study the exact reconstruction conditions of (2.14) because it can have better con-

ditions when some constraints are active. In practice, when exact reconstruction cannot be achieved,

a variant version of reg-mod-BP is to move the signal estimate constraint to thecost function which

reduces the reconstruction error by solving

min
b
‖(b)T c‖1 + γ‖(b)T − µT ‖22 s.t. y = Ab (2.20)

We call the above regularized modified-CS or reg-mod-CS. Denote its output by x̂reg. The parameterγ

is easier to adjust in practical applications. However, as we claimed at the beginning, reg-mod-CS can

not get better exact recovery conditions than modified-CS. We will study itthrough some simulations

below.
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2.2.4.1 Settingγ using an MAP interpretation of reg-mod-CS

One way to selectγ is to interpret the solution of (2.20) as a maximum a posteriori (MAP) estimate

under the following prior model and under the observation model of (1.1).Given the prior support and

signal estimates,T andµT , assume thatxT andxT c are mutually independent and

p(xT |T, µT ) = N (xT ;µT , σ
2
pI),

p(xT c |T, µT ) =

(

1

2λp

)|T c|
e
− ‖xTc‖1

λp , (2.21)

i.e. all elements ofx are mutually independent; each element ofT c is zero mean Laplace distributed

with parameterλp; and theith element ofT is Gaussian with meanµi and varianceσ2
p. Under the

above model, ifγ = λp/2σ
2
p in (2.20), then, clearly, its solution,̂xreg, will be an MAP solution.

Given i.i.d. training data, the maximum likelihood estimate (MLE) ofλp, σ2
p can be easily com-

puted in closed form [47].

2.2.4.2 Dynamic Regularized Modified-CS (reg-mod-CS)

To apply reg-mod-CS to time sequences, we solve (2.20) withT = N̂t−1 andµT = (x̂t−1)T . Thus,

we use Algorithm 1 with step 1 replaced by

min
b
‖(b)N̂c

t−1
‖1 + γ‖(b)N̂t−1

− (x̂t−1)N̂t−1
‖22 s.t. yt = Ab (2.22)

In the last step, we feed back̂xt andN̂t.

In Appendix A.6, we give the conditions under which the solution of (2.22) becomes a causal MAP

estimate. To summarize that discussion, if we setγ = λp/2σ
2
p whereλp, σ

2
p are the parameters of

the signal model given there, and if we assume that the previous signal is perfectly estimated from

y0, . . . yt−1 with the estimate being zero outsidêNt−1 and equal to(x̂t−1)N̂t−1
on it, then the solution

of (2.22) will be the causal MAP solution under that model.

In practice, the model parameters are usually not known. But, if we have atraining time sequence

of signals, we can compute their MLEs using (A.44), also given in AppendixA.6.
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2.3 Numerical Experiments

In this section, we did the simulations to verify all results we obtained in the abovetwo sections.

First, we show a set of experiments for modified-CS. Then, we give the other set of experiments for

reg-mod-BP.

2.3.1 Experimental results of modified-CS

We first compared the sufficient conditions of modified-CS and CS using their high probability

bounds and also through a detailed simulation. Then, we simulated two applications: CS-based im-

age/video compression (or single-pixel camera imaging) and static/dynamic MRI. The measurement

matrix wasA = HΦ whereΦ is the sparsity basis of the image andH models the measurement acqui-

sition. All operations are explained by rewriting the image as a 1D vector. We usedΦ = W ′ whereW

is an orthonormal matrix corresponding to a 2D-DWT for a 2-level Daubechies-4 wavelet. For video

compression (or single-pixel imaging),H is a random Gaussian matrix, denotedGr, (i.i.d. zero mean

Gaussianm × n matrix with columns normalized to unit̀2 norm). For MRI,H is a partial Fourier

matrix, i.e.H = MF whereM is anm × n mask which contains a single 1 at a different randomly

selected location in each row and all other entries are zero andF is the matrix corresponding to the 2D

discrete Fourier transform (DFT).

N-RMSE, defined here as‖xt−x̂t‖2/‖xt‖2, is used to compare the reconstruction performance. We

first used the sparsified and then the true image and then did the same for imagesequences. In all cases,

the image was sparsified by computing its 2D-DWT, retaining the coefficients from the 99%-energy

support while setting others to zero and taking the inverse DWT. We used the2-level Daubechies-4

2D-DWT as the sparsifying basis. We compare modified-CS with simple CS, CS-residual or CS-diff

[48] and LS-CS [43].

For solving the minimization problems given in (2.3), we used CVX,http://www.stanford.

edu/ ˜ boyd/cvx/ , for smaller sized problems (n < 4096). All simulations of Chapter 2.3.1.1 and

all results of Table 2.2 and Figs. 2.2 used CVX. For bigger signals/images, (i) the size of the matrixA

becomes too large to store on a PC (needed by most existing solvers includingthe ones in CVX) and

(ii) direct matrix multiplications take too much time. For bigger images and structured matrices like
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DFT times DWT, we wrote our own solver for (2.3) by using a modification of thecode in L1Magic

[49]. We show results using this code on a256× 256 larynx image sequence (n = 65536) in Fig. 2.3.

This code used the operator form of primal-dual interior point method. With this, one only needs to

store the sampling mask which takesO(n) bits of storage and one uses FFT and fast DWT to perform

matrix-vector multiplications inO(n logn) time instead ofO(n2) time. In fact for a
√
m×√m image

the cost difference isO(m logm) versusO(b4). All our code, for both small and large problems, is

posted online athttp://www.ece.iastate.edu/ ˜ namrata/SequentialCS.html . This

page also links to more experimental results.

2.3.1.1 Comparison of CS and Modified-CS

In Theorem 1 and Corollary 1, we derived sufficient conditions for exact reconstruction using

modified-CS. We first compare the sufficient conditions for modified-CS and for CS, expressed only in

terms ofδS ’s. Sufficient conditions for an algorithm serve as a designer’s tool to decide the number of

measurements needed for it and in that sense comparing the two sufficient conditions is meaningful.

For modified-CS, from Corollary 1, the sufficient condition in terms of onlyδS ’s is 2δ2u + δ3u +

δk + δ2k+u + 2δ2k+2u < 1. Usingk = s+ e− u, this becomes

2δ2u + δ3u + δs+e−u + δ2s+e + 2δ2s+e+u < 1. (2.23)

For CS, two of the best (weakest) sufficient conditions that use onlyδS ’s are given in [19, 11] and [10].

Between these two, it is not obvious which one is weaker. Using [19] and [10], CS achieves exact

reconstruction if either

δ2s <
√
2− 1 or δ2s + δ3s < 1. (2.24)

To compare (2.23) and (2.24), we useu = e = 0.02s which is typical for time series applications

(see Fig. 1.2). One way to compare them is to useδcr ≤ cδ2r [9, Corollary 3.4] to get the LHS’s of

both in terms of a scalar multiple ofδ2u. Thus, (2.23) holds ifδs+e+u < 1/2 andδ2u < 1/132.5. Since

δs+e+u = δ52u < 52δ2u, the second condition implies the first, and so onlyδ2u < 1/132.5 is sufficient.

But, (2.24) holds ifδ2u < 1/241.5 which is clearly stronger.
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(b) Plots ofρCS,2 defined in (2.26)
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(c) Plots ofρmodCS defined in (2.25)

Figure 2.1 Plots ofρCS andρCS,2 (in (a) and (b)) andρmodCS (in (c)) againsts/n
for 3 different values ofm/n. For ρmodCS , we usedu = e = s/50.
Notice that, for any givenm/n, the maximum allowed sparsity,s/n,
for ρmodCS < 1 is larger than that for which eitherρCS < 1 or
ρCS,2 <

√
2 − 1. Also, both are much smaller than what is observed

in simulations.

Alternatively, we can compare (2.23) and (2.24) using the high probability upper bounds onδS as

in [18]. Using [18, Eq 3.22], for anm × n random Gaussian matrix, with high probability (w.h.p.),

δS < gn/m(Sn ), where

gn/m

(

S

n

)

:= −1 +
[

1 + f

(

S

n
,
n

m

)]2

, where f

(

S

n
,
n

m

)

:=

√

n

m

(
√

S

n
+

√

2H

(

S

n

)

)

,

and binary entropyH(r) := −r log r − (1 − r) log(1 − r) for 0 ≤ r ≤ 1. Thus, w.h.p., modified-CS

achieves exact reconstruction from random-Gaussian measurements if

ρmodCS := 2gn/m

(

2u

n

)

+ gn/m

(

3u

n

)

+ gn/m

(

s+ e− u

n

)

+gn/m

(

s+ e

n

)2

+ 2gn/m

(

s+ e+ u

n

)2

< 1. (2.25)

Similarly, from (2.24), w.h.p., CS achieves exact reconstruction from random-Gaussian measurements

if either

ρCS := gn/m

(

2s

n

)

+ gn/m

(

3s

n

)

< 1 or ρCS,2 := gn/m

(

2s

n

)

<
√
2− 1. (2.26)

In Fig. 2.1, we plotρCS , ρCS,2 andρmodCS againsts/n for three different choices ofm/n. For

ρmodCS , we useu = e = 0.02s (from Fig. 1.2). As can be seen, the maximum allowed sparsity, i.e.
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the maximum allowed value ofs/n, for which eitherρCS < 1 or ρCS,2 <
√
2 − 1 is smaller than

that for whichρmodCS < 1. Thus, for a given number of measurements,m, w.h.p., modified-CS will

give exact reconstruction from random-Gaussian measurements, for larger sparsity sizes,s/n, than CS

would. As also noted in [18], in all cases, the maximum alloweds/n is much smaller than what is

observed in simulations, because of the looseness of the bounds. For thesame reason, the difference

between CS and modified-CS is also not as significant.

Table 2.1 Probability of exact reconstruction for modified-CS. Notice thatu = s and

e = 0 corresponds to CS.

(a) m = 0.16n
H
H
H
H

H
H

u

e
0 0.08s 0.24s 0.40s

0.04s 0.9980 0.9900 0.8680 0.4100
0.08s 0.8880 0.8040 0.3820 0.0580
s (CS) 0.0000

(b) m = 0.19n
H
H
H
H

H
H

u

e
0 0.08s 0.24s 0.40s

0.08s 0.9980 0.9980 0.9540 0.7700
0.12s 0.9700 0.9540 0.7800 0.4360
s (CS) 0.0000

(c) m = 0.25n
H
H
H
H

H
H

u

e
0 0.08s 0.24s 0.40s

0.04s 1 1 1 1
0.20s 1 1 0.9900 0.9520
0.35s 0.9180 0.8220 0.6320 0.3780
0.50s 0.4340 0.3300 0.1720 0.0600
s (CS) 0.0020

(d) m = 0.30n
H
H
H
H

H
H

u

e
0 0.08s 0.24s 0.40s

0.04s 1 1 1 1
0.20s 1 1 1 1
0.35s 1 1 0.9940 0.9700
0.50s 0.9620 0.9440 0.8740 0.6920
s (CS) 0.1400

(e) m = 0.40n
H
H
H

H
H
H

u

e
0 0.40s

0.04s 1 1
0.20s 1 1
0.35s 1 1
0.50s 1 1
s (CS)0.9820
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So far we only compared sufficient conditions. The actual alloweds for CS may be much larger.

To actually compare exact reconstruction ability of modified-CS with that of CS, we thus need Monte

Carlo. We use the following procedure to obtain a Monte Carlo estimate of the probability of exact

reconstruction using CS and modified-CS, for a givenA (i.e. we average over the joint distribution of

x andy givenA).

1. Fix signal length,n = 256 and its support size,s = 0.1n = 26. Selectm, u ande.

2. Generate them × n random-Gaussian matrix,A (generate anm × n matrix with independent

identically distributed (i.i.d.) zero mean Gaussian entries and normalize each column to unit`2

norm)

3. Repeat the following tot= 500 times

(a) Generate the support,N , of sizes, uniformly at random from[1, n].

(b) Generate(x)N ∼ N (0, 100I). Set(x)Nc = 0.

(c) Sety := Ax.

(d) Generate∆ of sizeu uniformly at random from the elements ofN .

(e) Generate∆e of sizee, uniformly at random from the elements of[1, n] \N .

(f) Let T = N ∪∆e \∆. Run modified-CS, i.e. solve (2.3)). Call the outputx̂modCS .

(g) Run CS, i.e. solve (2.3) withT being the empty set. Call the outputx̂CS .

4. Estimate the probability of exact reconstruction using modified-CS by counting the number of

timesx̂modCS was equal tox (“equal” was defined as‖x̂modCS−x‖2/‖x‖2 < 10−5) and dividing

by tot= 500.

5. Do the same for CS usinĝxCS .

6. Repeat for various values ofm, u ande.

We setn = 256 ands = 0.1n and we variedm between0.16n = 1.6s and0.4n = 4s. For each

m, we variedu between0.04s to s ande between0 to 0.4s. We tabulate our results in Table 2.1.The



www.manaraa.com

30

caseu = s ande = 0 corresponds to CS.Notice that whenm is just0.19n = 1.9s < 2s, modified-CS

achieves exact reconstruction more than 99.8% of the times ifu ≤ 0.08s ande ≤ 0.08s. In this case,

CS haszeroprobability of exact reconstruction. Withm = 0.3n = 3s, CS has a very small (14%)

chance of exact reconstruction. On the other hand, modified-CS worksalmost all the time foru ≤ 0.2s

ande ≤ 0.4s. CS needs at leastm = 0.4n = 4s to work reliably.

The above simulation was done in a fashion similar to that of [18]. It does notcompute them

required for Theorem 1 to hold. Theorem 1 says that ifm is large enough for a givens, u, e, so that the

two conditions given there hold, modified-CS willalwayswork. But all we show above is that (1) for

certain large enough values ofm, the Monte Carlo estimate of the probability of exact reconstruction

using modified-CS is 1 (probability computed by averaging over the joint distribution ofx andy); and

(2) whenu, e are small, this happens for much smaller values ofm with modified-CS than with CS.

This issue has been discussed in detail in [50, 51] (probability or expected chance of exact recon-

struction). In [50], the authors give a greedy pursuit algorithm to find these pathological cases for CS,

i.e. to find the sparsest vectorx for which CS does not give exact reconstruction. The support size of

this vector then gives an upper bound on the sparsity that CS can handle.Developing a similar approach

for modified-CS is a useful open problem.

2.3.1.2 Sparsified and True (Compressible) Single Image

We first evaluated the single image reconstruction problem for a sparsifiedimage. The image used

was a32 × 32 cardiac image (obtained by decimating the full128 × 128 cardiac image shown in Fig.

1.2), i.e.n = 1024. Its support sizes = 107 ≈ 0.1n. We used the set of indices of the approximation

coefficients as the known part of the support,T . Thus,k = |T | = 64 and sou = |∆| ≥ 43 which

is a significantly large fraction ofs. We compare the N-RMSE in Table 2.2. Even with such a large

unknown support size, modified-CS achieved exact reconstruction from 29% random Gaussian and

19% partial Fourier measurements. CS error in these cases was 34% and 13% respectively.

We also did a comparison for actual cardiac and larynx images (which are only approximately

sparse). The results are tabulated in Table 2.2. Modified-CS works betterthan CS, though not by much

since|∆| is a large fraction of|N |. HereN refers to theβ% support for any largeβ, e.g.β = 99.
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(b) H = MF , m0=0.5n, m=0.16n

Figure 2.2 Reconstructing thesparsified 32 × 32 cardiac image sequence.
s ≈ 0.1n, u ≈ 0.01n, e ≈ 0.005n. (a) H = Gr, (b) H = MF .
Similar results were also obtained for the larynx sequence.

Table 2.2 Reconstruction Error (N-RMSE)

Sparsified True True
Cardiac Cardiac Larynx

CS (H = Gr, m = 0.29n ) 0.34 0.36 0.090
Mod-CS (H = Gr, m = 0.29n) 0 0.14 0.033

CS (H = MF , m = 0.19n) 0.13 0.12 0.097
Mod-CS (H = MF , m = 0.19n) 0 0.11 0.025

2.3.1.3 Sparsified Image Sequences

We compared modified-CS with simple CS (CS at each time instant), CS-diff(CS-residual) and

LS-CS [43] for the sparsified32× 32 cardiac sequence in Fig. 2.2. Modified-CS was implemented as

in Algorithm 1. At t = 0, the setT was empty and we used 50% measurements. For this sequence,

|Nt| ≈ 0.1n = 107, u = |∆| ≤ 10 ≈ 0.01n ande = |∆e| ≤ 5 ≈ 0.005n. Sinceu � |Nt| and

e� |Nt|, modified-CS achieves exact reconstruction with as few as 16% measurements att > 0. Fig.

2.2(a) usedH = Gr (compression/single-pixel imaging) and Fig. 2.2(b) usedH = MF (MRI). As can

be seen, simple CS has very large error. CS-diff and LS-CS also have significantly nonzero error since

the exact sparsity size of both the signal difference and the signal residual is equal to/larger than the

signal’s sparsity size.Modified-CS error is10−8 or less (exact for numerical implementation). Similar
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conclusions were also obtained for the sparsified larynx sequence, see [40, Fig. 3].

2.3.1.4 True (Compressible) Image Sequences

Finally we did the comparison for actual image sequences which are only compressible. We show

results on the larynx (vocal tract) image sequence of Fig. 1.2. For Fig. 2.3we used the entire256×256

image sequence with partial Fourier measurements.At t = 0, modified-CS and LS-CS usedT to be the

set of indices of the approximation coefficients.

Fig. 2.3 shows reconstruction of the full larynx sequence usingH = MF , m = 0.19n and three

choices ofm0. In 2.3(a), we compare the reconstructed image sequence using modified-CS with that

using simple CS. The error (N-RMSE) was 8-11% for CS, while it was stableat 2% or lesser for

modified-CS. Sincem0 is large enough for CS to work, the N-RMSE of CS-diff (not shown) also

started at a small value of 2% for the first few frames, but kept increasing slowly over time. In 2.3(b),

2.3(c), we show N-RMSE comparisons with simple CS, CS-diff and LS-CS. In the plot shown, the

LS-CS error is close to that of modified-CS because we implemented LS estimationusing conjugate

gradient and did not allow the solution to converge (forcibly ran it with a reduced number of iterations).

Without this tweeking, LS-CS error was much higher, since the computed initialLS estimate itself was

inaccurate.

Notice from Fig. 2.3, thatmodifiedCS significantly outperform CS and CS-diff. In most cases, both

also outperform LS-CS.In Fig. 2.3(c), CS-diff performs so poorly primarily because the initial error at

t = 0 is very large (since we use onlym0 = 0.19n). As a result the difference signal att = 1 is not

compressible enough, making its error large and so on. But even whenm0 is larger and the initial error

is small, CS-diff is still the worst, although the difference in errors is not as large, e.g. in Fig. 2.3(b).

2.3.2 Experimental results of reg-mod-BP and reg-mod-CS

2.3.2.1 Comparing reg-mod-BP with modified-CS

In this section, we show two types of numerical experiments. The first simulates quantized signals

and signal estimates. This is the case where some constraints are active with nonzero probability. The

good set,Tg = Ta+g ∪ Ta-g is also non empty with nonzero probability. Hence, for a given small
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enoughn, reg-mod-BP has significantly higher exact reconstruction probability,pexact(n), as compared

to both mod-CS [25] and weighted̀1 [26] and much higher than that of BP [1, 18]. Alternatively,

it also requires a significantly reducedn for exact reconstruction with probability one,nexact(1). In

computingpexact(n) we average over the distribution ofx, T andµ̂, as also in [25, 18]. All numbers

are computed based on 100 Monte Carlo simulations. To computenexact(1), we tried various values

of n for each algorithm and computed the smallestn required for exact recovery always (in all 100

simulations).

We also do a second simulation where signal estimates are not quantized.

In the following steps, the notationz ∼ discrete-uniform(a1, a2, . . . an) means thatz is equally

likely to be equal toa1, a2, . . . or an. We use±a as short for+a,−a. Also, z ∼ uniform(a, b)

generates a scalar uniform random variable in the range[a, b]. The notationxi
iid∼ P for all i ∈ S means

that, for alli ∈ S, eachxi is identically distributed according to P and is independent of all the others.

2K BP mod-CS weighted`1 Reg-mod-BP
pexact(0.15m) 4 0 0.18 0.16 0.64

N-RMSE(0.15m) 4 1.011 0.059 0.060 0.029
nexact(1) 4 0.39m 0.21m 0.21m 0.18m

pexact(0.15m) 10 0 0.18 0.16 0.39
N-RMSE(0.15m) 10 1.011 0.059 0.060 0.032

nexact(1) 10 0.4m 0.21m 0.21m 0.20m

Table 2.3 Quantized signals and signal estimates. Recall thatk = |T | = 26. For

2K = 4, the expected sizes ofTa, Tg and Tb are E[|Ta|] = 10.01,

E[|Tg|] = 5.27 and E[|Tb|] = 20.73. For 2K = 10, E[|Ta|] = 4.28,

E[|Tg|] = 2.3 andE[|Tb|] = 23.7.

BP mod-CS weighted`1 Reg-mod-BP
pexact(0.15m) 0 0.26 0.26 0.57

N-RMSE(0.15m) 0.967 0.152 0.152 0.082
nexact(1) 0.4m 0.21m 0.21m 0.20m

Table 2.4 Quantized signals and signal estimates: case 2. Recall thatk = |T | = 26.

The expected sizes ofTa, Tg andTb areE[|Ta|] = 9.02, E[|Tg|] = 4.58 and

E[|Tb|] = 21.42.
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BP mod-CS weighted`1 Reg-mod-BP
pexact(0.18m) 0 0.87 0.87 0.87

N-RMSE(0.18m) 0.961 0.0175 0.0177 0.0123
N-RMSE(0.11m) 1.05 0.179 0.175 0.0635

nexact(1) 0.39m 0.21m 0.21m 0.21m

Table 2.5 The non quantized case.

For the quantized case,x was am = 256 length sparse vector with support size|N | = 0.1m = 26

and support estimate error sizesu = |∆| = |∆e| = 0.1|N | = 3. We generated the matrixA once as an

n ×m random Gaussian matrix (generate ann ×m matrix with i.i.d zero mean Gaussian entries and

normalize each column to unit`2 norm). The following steps were repeated tot= 100 times.

1. The support set,N , of size|N |, was generated uniformly at random from[1,m]. The support

misses set,∆, of sizeu, was generated uniformly at random from the elements ofN . The support

extras set,∆e, also of sizeu, was generated uniformly at random from the elements ofN c. The

support estimate,T = N ∪∆e \∆ and thus|T | = |N | = 26.

2. We generatedxi
iid∼ discrete-uniform(±1) for i ∈ N ∩ T ; xi

iid∼ discrete-uniform(±0.1) for

i ∈ ∆, andxi = 0 for i ∈ N c. xN∩T andx∆ are also independent of each other. We generated

µ̂T = xT + ν whereνi
iid∼ discrete-uniform(0,± ρ

K ,±2 ρ
K , · · · ± ρ) for i ∈ T ∩ N andνi

iid∼

discrete-uniform(± ρ
K ,±2 ρ

K , · · · ± ρ) for i ∈ ∆e. We usedρ = 0.1 and tried two choices ofK.

Notice that, for a givenK, the number of equally likely values thatxi − µ̂i for i ∈ T can take

are roughly2K + 1 (2K wheni ∈ ∆e). The constraint is active whenxi − µ̂i is equal to±ρ.

Thus, the expected size of the active set is roughly22K+1 |T |.

3. We generatedy = Ax. We solved reg-mod-BP given in (2.14) withρ = 0.1; BP given

in (1.6); mod-CS given in (2.3); and weighted`1 given in (1.8) with various choices ofγ:

[0.1 0.05 0.01 0.001]. We used the CVX optimization package,http://www.stanford.

edu/boyd/cvx/ , which uses primal-dual interior point method for solving the minimization

problem.

We computedpexact(n) as the the number of timeŝx was equal tox (“equal” was defined as‖x̂ −
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x‖2/‖x‖2 < 10−5) divided by tot= 100. For weighted̀ 1, we computedpexact(n) for each choice of

γ and recorded the largest one. This corresponded toγ = 0.1. We tabulate results in Table 2.3. In the

first row, we recordpexact(0.15m) for all the methods, when usingK = 2. We also record the Monte

Carlo average of the sizes of the active set|Ta| = |Ta+∪ Ta-|; of the good set,|Tg| = |Ta+g∪ Ta-g| and

of the bad set|Tb| = k − |Tg|. In the second row, we record the normalized root mean squared error

(N-RMSE). In the third row, we recordnexact(1). In the next three rows, we repeat the same things with

K = 5.

As can be seen,|Tg| is about half the size of the active set,|Ta|. As K is increased,|Ta| and

hence|Tg| reduces (|Tb| increases) and thuspexact(0.15m) decreases andnexact(1) increases. Also, for

mod-CS and weighted̀1, pexact(0.15m) is significantly smaller than for reg-mod-BP, whilenexact(1) is

larger.

Next, we simulated a more realistic scenario – the case of 3-bit quantized images(bothx and µ̂

take integer values between 0 to 7). Here againm = 256, |N | = 0.1m = 26, andu = |∆| =

|∆e| = 0.1|N | = 3. The setsN , ∆, ∆e andT were generated as before. We generatedxi
iid∼

discrete-uniform(3, 4, . . . 7) for i ∈ N ∩ T ; xi ∼ discrete-uniform(1, 2) for i ∈ ∆; andxi = 0 for

i ∈ N c. Also, µ̂T = clip(xT + ν) whereνi ∼ discrete-uniform(−2,−1, 0, 1, 2) for i ∈ T ∩ N ; and

νi ∼ discrete-uniform(−2,−1, 1, 2) for i ∈ ∆e. Also clip(z) clips any value more than 7 to 7 and any

value less than zero to zero. Clearly, in this caseρ = 2. We record our results in Table 2.4. Similar

conclusions as before can be drawn.

Finally, we simulated the non-quantized case. We usedm = 256, |N | = 0.1m = 26, andu =

|∆| = |∆e| = 0.1|N | = 3. We generatedxi
iid∼ discrete-uniform(±1) for i ∈ N ∩ T ; xi

iid∼

discrete-uniform(±0.1) for i ∈ ∆, andxi = 0 for i ∈ N c. The signal estimate,̂µT = xT + ν

whereνi
iid∼ uniform(−ρ, ρ) with ρ = 0.1. We tabulate our results in Table 2.5. Sinceν is a real vector

(not quantized), the probability of any constraint being active is zero. Thus, as expected,pexact and

nexactare the same for reg-mod-BP and mod-CS and weighted`1, though significantly better than BP.

However, the N-RMSE for reg-mod-BP is significantly lower than that for mod-CS and weighted̀1

also, particularly whenn = 0.11m.
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2.3.2.2 Comparing reg-mod-CS with Modified-CS

We ran a Monte Carlo simulation to compare Modified-CS with reg-mod-CS for sparse signals. We

fixed n = 256, s = 26 ≈ 0.1n, u = e = 0.08s. We usedm = 0.16n, 0.12n, 0.11n in three sets of

simulations done in a fashion similar to that of Chapter 2.3.1.1, but with the followingchange. In each

run of a simulation, we generated each element ofµN\∆ to be i.i.d. ±1 with probability (w.p.) 1/2

and each element ofµ∆ and ofµ∆e to be i.i.d.±0.25 w.p. 1/2. We generatedxN ∼ N (µN , 0.01I)

and we setxNc = 0. We sety := Ax. We tested reg-mod-CS with various values ofγ (γ = 0

corresponds to modified-CS). We used tot= 50. The results are tabulated in Table 2.6. We computed

the exact reconstruction probability as in Chapter 2.3.1.1 by counting the number of timesx̂reg equals

x and normalizing. As can be seen, reg-mod-CS does not improve the exactreconstruction probability,

in fact it can reduce it. This is primarily because the elements of(x̂reg)∆e are often nonzero, though

small2. But, it significantly reduces the reconstruction error, particularly whenm is small.

Table 2.6 Comparing probability of exact reconstruction (prob) and reconstruction error

(error) of reg-mod-CS with differentγ’s. γ = 0 corresponds to modified-CS.

(a) m = 0.16n

γ 0 (modCS) 0.001 0.05 0.1 0.5 1
prob 0.76 0.76 0.74 0.74 0.70 0.34
error 0.0484 0.0469 0.0421 0.0350 0.0273 0.0286

(b) m = 0.12n

γ 0 (modCS) 1
prob 0.04 0
error 0.2027 0.0791

(c) m = 0.11n

γ 0 (modCS) 1
prob 0 0
error 0.3783 0.0965

We compared reg-mod-CS with other algorithms in Fig. 2.4. We used a32 × 32 block of it

with random Gaussian measurements. For the subfigures in Fig. 2.4, we used H = Gr (random

Gaussian) andm0 = 0.19n. Fig. 2.4(a) and 2.4(b) usedm = 0.19n, 0.06n respectively. At eacht,

RegModCS-MAP solved (2.22) withλp, σ
2
p estimated using (A.44) from a few frames of the sequence

treated as training data. The resultingγ = λ̂p/2σ̂2
p was 0.007. RegModCS-exp-opt solved (2.20) with

2But if we usex̂reg to first estimate the support using a small threshold,α, and then estimate the signal asAN̂
†y, this

probability does not decrease as much and in fact it even increases whenm is smaller.
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T = N̂t−1, µT = (x̂reg,t−1)T and we experimented with many values ofγ and chose the one which

gave the smallest error. Notice from Fig. 2.4(a) that RegModCS-MAP gives MSEs which are very

close to those of RegModCS-exp-opt.
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Original sequence

CS−reconstructed sequence

Modified CS reconstructed sequence

(a) Reconstructed sequence.H=MF . m=0.19n, m0=0.5n.

5 10 15 20
10

−2

10
−1

Time→

N
−

R
M

S
E

 

 

CS−diff
Mod−CS
CS
LS−CS

(b) H=MF , m0=0.2n, m=0.19n
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(c) H=MF , m0=0.19n, m=0.19n

Figure 2.3 Reconstructing the 256x256actual (compressible)vocal tract (larynx)
image sequence fromsimulated MRImeasurements, i.e.H = MF .
All three figures usedm = 0.19n for t > 0 but used different val-
ues ofm0. Image size,n = 2562 = 65536. 99% energy support,
|Nt| ≈ 0.07n; u ≈ 0.001n. In Fig. 2.3(a), modified-CS usedα = 102

which is the smallest magnitude element in the 99% support.
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(a) H=Gr, m0=0.19n, m=0.19n
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(b) H=Gr, m0=0.19n, m=0.06n

Figure 2.4 Reconstructing a32×32 block of theactual (compressible)larynx se-
quence from random Gaussian measurements.n = 1024, 99%-energy
support size,s ≈ 0.07n, u ≈ 0.001n ande ≈ 0.002n. Modified-CS
usedα = 502 whenm = 0.19n and increased it toα = 802 when
m = 0.06n.
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CHAPTER 3. Sparse Reconstruction for Noisy Measurements with Partial Support

and Signal Knowledge

In Chapter 2, we introduced modified-CS and reg-mod-BP for the noiseless measurements’ case.

Sufficient conditions for exact reconstruction were derived and it was argued that these are much weaker

than those needed for CS. In this chapter, we bound the reconstruction error of modified-BPDN and

regularized modified-BPDN which are noisy cases of modified-CS and reg-mod-BP. We use a strategy

similar to the results of [2] to bound the reconstruction error and hence, just like in [2], the bounds we

obtain are computable. Then we also derive the bounds without sufficient conditions that are much

tighter. Simulations are shown to compare the bounds.

3.1 Modified-BPDN

In this section, our goal is to reconstruct them-length sparse signalx from then-length measure-

menty with m > n

y := Ax+ w (3.1)

The measurement is obtained from ann × m measurement matrixA and corrupted by an-length

vector noisew. The support ofx denoted asN consists of three parts:N , T ∪ ∆ \ ∆e where

∆ andT are disjoint and∆e ⊆ T . We use the partially known supportT which the known part of

support while∆e is the error in the known part of support and∆ is the unknown part. We also define

Ne , T ∪∆ = N ∪∆e.

In Chapter 2, equation (2.3) gives the modified-CS algorithm under noiseless measurements. We

relax the equality constraint of this equation to propose modified-BPDN algorithm using a modification
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of the BPDN idea[1]. We solve

min
b

1

2
‖y −Ab‖22 + γ‖bT c‖1 (3.2)

Then the solution to this convex optimization problemx̂ will be the reconstructed signal of the problem.

In [28, 52], we provided a computable bound for the reconstruction error as well as the sufficient

conditions. We will not address it here since mod-BPDN is a special case of reg-mod-BPDN and the

bound follows by settingλ = 0 of the bound for reg-mod-BPDN. We will compare the bounds of

BPDN, mod-BPDN in the next section.

3.2 Regularized Modified-BPDN for Noisy Sparse Reconstruction with Partial

Erroneous Support and Signal Value Knowledge

In previous section, we introduced modified-BPDN using partially known support to reconstruct

the sparse signal from noisy measurements. In this section, we study the method to reconstruct using

both the support information and the signal estimate on it in this chapter. Our goal is still to reconstruct

anm-length sparse vector,x, with support,N , from ann < m length noisy measurement vector,y,

satisfying

y := Ax+ w (3.3)

when the following two things are available: (i) partial, and partly erroneous,knowledge of the signal’s

support, denoted byT ; and (ii) an erroneous estimate of the signal values onT , denoted by(µ̂)T . w

is the measurement noise andA is the measurement matrix. The true support of the signal,N , can be

rewritten asN = T ∪∆ \∆e and∆ , N \ T and∆e , T \N are the errors in the support estimate.

The signal estimate is assumed to be zero alongT c, i.e.

µ̂ =







(µ̂)T

0T c






(3.4)

and the signal itself can be rewritten as

(x)N∪T = (µ̂)N∪T + ν

(x)Nc = 0 (3.5)
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whereν denotes the error in the prior signal estimate. It is assumed that the error energy,‖ν‖22, is small

compared to the signal energy,‖x‖22.

In this section, we introduce regularized modified-BPDN (reg-mod-BPDN)and obtain a com-

putable bound on its reconstruction error using an approach motivated by[2]. Reg-mod-BPDN solves

min
b

γ‖bT c‖1 +
1

2
‖y −Ab‖22 +

1

2
λ‖bT − µ̂T ‖22 (3.6)

i.e. it tries to find the signal that is sparsest outside the setT , while being “close enough” tôµT onT ,

and while satisfying the data constraint. Reg-mod-BPDN uses the fact thatT is a good estimate of the

true support,N , and that̂µT is a good estimate ofxT . In particular, fori ∈ ∆e, this implies that|µ̂i| is

close to zero (sincexi = 0 for i ∈ ∆e). We also show how to use the reconstruction error bound result

to obtain another computable bound that holds without any sufficient conditions and is tighter. This

allows easy bound comparisons of the various approaches. A similar result for mod-BPDN and BPDN

follows as a direct corollary.

Before we bound the reconstruction error for reg-mod-BPDN, we will discuss some related ap-

proaches which may be confused with reg-mod-BPDN. Notice that Reg-mod-BPDN may also be

interpreted as a Bayesian CS or a model-based CS approach. Recent work in this area includes

[53, 54, 13, 55, 56, 57, 58].

3.2.1 Some Related Approaches

Before going further, we discuss belowa few approaches that are related to, but different from

reg-mod-BPDN, and we argue when and why these will be worse than reg-mod-BPDN.We show com-

parisons with all these in Fig. 3.1.

One seemingly related approach is what can be calledCS-mod-residual.It computes

x̂T = µ̂T , x̂T c = b̂c, whereb̂c solves

min
bc

1

2
‖y −AT µ̂T −AT cbc‖22 + γ‖bc‖1 (3.7)

wherebc stands for(b)T c . This is solving a sparse recovery problem onT c, i.e. it is implicitly assuming

thatxT is either equal tôµT or very close to it. Thus, this also works only when the signal value prior

is very strong.
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Both CS-residual and CS-mod-residual can be interpreted as extensionsof BPDN, and [2, Theorem

8] can be used to bound their error. In either case, the bound will containterms proportional to‖(xT −

µ̂T )‖2 and as a result, it will be large whenever the prior is not strong enough1. This is also seen from

our simulation experiments shown in Fig. 3.1 where we provide comparisons for the case of good

signal value prior (0.1% error in initial signal estimate) and bad signal valueprior (10% error in initial

signal estimate). We vary support errors from 5% to 20% misses, while keeping the extras fixed at

10%.

Reg-mod-BPDN can also be confused withmodified-CS-residualwhich computes[40]

x̂ = µ̂+ b̂, whereb̂ solves

min
b

1

2
‖y −Aµ̂−Ab‖22 + γ‖bT c‖1 (3.8)

This is indeed related to reg-mod-BPDN and in fact this inspired it. We studied this empirically in

Chapter 6. However, one cannot get good error bounds for it in anyeasy fashion. Notice that the

minimization is over the entire vectorb, while the`1 cost is only onbT c .

One may also consider solving the following variant of reg-mod-BPDN (we call this reg-mod-

BPDN-var):

min
b

γ‖bT c‖1 +
1

2
‖y −Ab‖22 +

1

2
λ‖b− µ̂‖22 (3.9)

Sinceµ̂ is supported onT , the regularization term can be rewritten asλ‖b − µ̂‖22 = λ‖bT − µ̂T ‖22 +

λ‖bT c‖22. Thus, in addition to thè1 norm cost onbT c imposed by the first term, this last term is also

imposing aǹ 2 norm cost on it. Ifλ is large enough, thè2 norm cost will encourage the energy of the

solution to be spread out onT c, thus causing it to be less sparse. Since the truex is very sparse onT c

(|∆| is small compared to the support size also), we will end up with a larger recovery error2. [see Fig.

3.1(a)]. However, if we compare the two approaches for compressible signal sequences, e.g. the larynx

sequence, it is difficult to say which will be better [see Fig. 3.3].

Finally, one may solve the following (we can call it reg-BPDN)

min
b

γ‖b‖1 +
1

2
‖y −Ab‖22 +

1

2
λ‖b− µ̂‖22 (3.10)

1In either case, one can assume that(x − µ̂) is supported on∆ and the “noise” isw + AT (xT − µ̂T ). Thus, CS-
residual error can be bounded byC(A,∆)(‖w‖2 + ‖AT (xT − µ̂T )‖2) while CS-mod-residual error can be bounded by
‖xT − µ̂T ‖2 + C(AT c ,∆)(‖w‖2 + ‖AT (xT − µ̂T )‖2).

2In the limit if
√

λ/2 is much larger thanγ, we may get a completely non-sparse solution.



www.manaraa.com

44

This has two limitations. (1) Like CS-residual, this also does not use the fact that whenT is an accurate

estimate of the true support,(x)T c is much more sparse compared with the full(x − µ̂). (2) Its last

term is the same as that of reg-mod-BPDN-var which also causes the same problem as above.

3.3 Regularized Modified-BPDN (Reg-mod-BPDN)

Consider the sparse recovery problem when partial support knowledge is available. As explained

earlier, one can use mod-BPDN given in (3.2). When the support estimate isaccurate, i.e.|∆| and

|∆e| are small, mod-BPDN provides accurate recovery with fewer measurementsthan what BPDN

needs. However, it puts no cost onbT except the cost imposed by the data term. Thus, when very few

measurements are available or when the noise is large,bT can become larger than required (in order to

reduce the data term). A similar, though lesser, bias will occur with weighted`1 also whenγ′ < γ. To

address this, when reliable prior signal value knowledge is available, we can instead solve

min
b

L(b) , γ‖bT c‖1 +
1

2
‖y −Ab‖22 +

1

2
λ‖bT − µ̂T ‖22 (3.11)

which we callreg-mod-BPDN. Its solution, denoted bŷx, serves as the reconstruction of the unknown

signal,x. Notice that the first term helps to find the solution that is sparsest outsideT , the second term

imposes the data constraint while the third term imposes closeness toµ̂ alongT .

Mod-BPDN is the special case of (3.11) whenλ = 0. BPDN is also a special case withλ = 0 and

T = ∅ (so that∆ = N ).

3.3.1 Limitations and Assumptions

A limitation of adding the regularizing term,λ‖bT − µ̂T ‖22 is as follows. It encourages the solution

to be close to(µ̂)∆e which is not zero. As a result,(x̂)∆e will also not be zero (except ifλ is very

small) even though(x)∆e = 0. Thus, even in the noise-free case, reg-mod-BPDN will not achieve

exact reconstruction. In both noise-free and noisy cases, if(µ̂)∆e is large,(x̂)∆e being close to(µ̂)∆e

can result in large error. Thus, we need the assumption that(µ̂)∆e is small.

For the reason above, when we estimate the support ofx̂, we need to use a nonzero threshold, i.e.
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compute

N̂ = {i : |x̂i| > ρ} (3.12)

with aρ > 0. We note that thresholding as above is doneonlyfor support estimation and not for improv-

ing the actual reconstruction. Support estimation is required in dynamic reg-mod-BPDN (described

below) where we use the support estimate from the previous time instant as thesupport knowledge,T ,

for the current time.

In summary, to get a small error reconstruction, reg-mod-BPDN requiresthe following (this can

also be seen from the result of Theorem 4):

1. T is a good estimate of the true signal’s support,N , i.e. |∆| and|∆e| are small compared to|N |;

and

2. µ̂T is a good estimate ofxT . For i ∈ ∆e, this implies that|µ̂i| is close to zero (sincexi = 0 for

i ∈ ∆e).

3. For accurate support estimation, we also need that most nonzero elements of x are larger than

maxi∈∆e |µ̂i| (for exact support estimation, we need this to hold for all nonzero elementsof x).

The smallest nonzero elements ofx are usually on the set∆. In this case, the third assumption is

equivalent to requiring that most elements ofx∆ are larger thanmaxi∈∆e |µ̂i|.

3.3.2 Dynamic Reg-Mod-BPDN for Recursive Recovery

An important application of reg-mod-BPDN is for recursively reconstructing a time sequence of

sparse signals from undersampled measurements, e.g. for dynamic MRI. To do this, at timet we solve

(3.11) withT = N̂t−1, (µ̂)T = (x̂t−1)T and(µ̂)T c = 0. HereN̂t−1 is the support estimate of the

previous reconstruction,̂xt−1. At the initial time,t = 0, we can either initialize with BPDN, or with

mod-BPDN usingT from prior knowledge, e.g. for wavelet sparse images,T could be the set of indices

of the approximation coefficients. We summarize the stepwise dynamic reg-mod-BPDN approach in

Algorithm 2. Notice that att = 0, one may need more measurements since the prior knowledge ofT

may not be very accurate. Hence, we usey0 = A0x0+w0 whereA0 is ann0×m measurement matrix

with n0 > n.
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In Algorithm 2, we should reiterate that for support estimation, we need to use a thresholdρ > 0.

The threshold should be large enough so that most elements of∆e,t := T \Nt = N̂t−1 \Nt do not get

detected into the support.

We briefly discuss here the stability of dynamic reg-mod-BPDN (reconstruction error and support

estimation errors bounded by a time-invariant and small value at all times). Using an approach similar

to that of [59], it should be possible to show the following. If (i)ρ is large enough (so that̂Nt does

not falsely detect any element that got removed fromNt); (ii) the newly added elements to the current

support,Nt, either get added at a large enough value to get detected immediately, or withina finite

delay their magnitude becomes large enough to get detected; and (iii) the matrixA satisfies certain

conditions (for a given support size and support change size); reg-mod-BPDN will be stable.

Algorithm 2 Dynamic Reg-mod-BPDN

At t = 0, computêx0 as the solution ofminb γ‖(b)T c‖1 + 1
2‖y0 −Ab‖22, whereT is either empty or

is available from prior knowledge. ComputêN0 = {i ∈ [1, ...,m] : |(x̂0)i| > ρ}. SetT ← N̂0 and
(µ̂)T ← (x̂0)T
For t > 0, do

1. Reg-Mod-BPDN.Let T = N̂t−1 and letµ̂T = (x̂t−1)T . Computêxt as the solution of (3.11).

2. Estimate Support.N̂t = {i ∈ [1, ...,m] : |(x̂t)|i > ρ}.

3. Output the reconstruction̂xt.

FeedbackN̂t andx̂t; incrementt, and go to step 1.

3.4 Bounding the Reconstruction Error

In this section, we bound the reconstruction error of reg-mod-BPDN. Since mod-BPDN and BPDN

are special cases, their results follow as direct corollaries. The resultfor BPDN is the same as [2,

Theorem 8]. In Chapter 5.2.1, we define the terms needed to state our result. In 5.2.2 we state our

result and discuss its implications. In 5.2.3, we give the proof outline.
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3.4.1 Definitions

We begin by defining the function that we want to minimize as

L(b) , L1(b) + γ‖bT c‖1 (3.13)

where

L1(b) ,
1

2
‖y −Ab‖22 +

1

2
λ‖bT − µ̂T ‖22 (3.14)

contains the twò2 norm terms (data fidelity term and the regularization term). If we constrainb to be

supported onT ∪S for someS ⊂ T c, then the minimizer ofL1(b) will be the regularized least squares

(LS) estimator obtained when we put a weightλ on‖bT − µ̂T ‖22 and a weight zero on‖bS − µ̂S‖22.

Let S be a given subset of∆. Next, we define three matrices which will be frequently used in our

results. Let

QT,λ(S) , AT∪S
′AT∪S + λ







IT 0T,S

0S,T 0S,S






(3.15)

MT,λ , I −AT (AT
′AT + λIT )

−1AT
′ (3.16)

PT,λ(S) , (AS
′MT,λAS)

−1 (3.17)

whereIT is a|T | × |T | identity matrix and0T,S , 0S,T , 0S,S are all zeros matrices with sizes|T | × |S|,

|S| × |T | and|S| × |S|.

Assumption 1 We assume thatQT,λ(∆) is invertible. This implies that, for anyS ⊆ ∆, the functions

L(b) andL1(b) are strictly convex over the set of all vectors supported onT ∪ S.

Proposition 2 Whenλ > 0, QT,λ(S) is invertible ifAS has full rank. Whenλ = 0 (mod-BPDN), this

will hold if AT∪S has full rank.

The proof is easy and is given in Appendix B.1.

Let S ⊆ ∆. Consider minimizingL(b) over b supported onT ∪ S. Whenb(T∪S)c = 0 and

Assumption 1 holds,L(bT∪S) is strictly convex and thus has a unique minimizer. The same holds for

L1(bT∪S). Define their respective unique minimizers as

dT,λ(S) , argmin
b

L(b) subject to b(T∪S)c = 0 (3.18)

cT,λ(S) , argmin
b

L1(b) subject to b(T∪S)c = 0 (3.19)
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As explained earlier,cT,λ(S) is the regularized LS estimate ofx when assuming thatx is supported on

T ∪ S and with the weights mentioned earlier. It is easy to see that

[cT,λ(S)]T∪S = QT,λ(S)
−1






AT∪S

′y +







λµ̂T

0S













[cT,λ(S)](T∪S)c = 0 (3.20)

In a fashion similar to [2], define

ERCT,λ(S) , 1− max
ω/∈T∪S

‖PT,λ(S)AS
′MT,λAω‖1 (3.21)

This is different from the ERC of [2] but simplifies to it whenT = ∅, S = N andλ = 0. In [2],

the ERC, which in our notation isERC∅,0(N), being strictly positive, along withγ approaching zero,

ensured exact recovery of BPDN in the noise-free case. Hence, in [2], ERC was an acronym forExact

Recovery Coefficient. In this work, the same holds for mod-BPDN. IfERCT,0(∆) > 0, the solution

of mod-BPDN approaches the truex asγ approaches zero. We explain this further in Remark 6 below.

However, no similar claim can be made for reg-mod-BPDN. On the other hand, for the reconstruction

error bounds, ERC serves the exact same purpose for reg-mod-BPDN as it does for BPDN in [2]:

ERCT,λ(∆) > 0 andγ greater than a certain lower bound ensures that the reg-mod-BPDN (or mod-

BPDN) error can be bounded by modifying the approach of [2].

3.4.2 Reconstruction error bound

The reconstruction error can be bounded as follows.

Theorem 4 If QT,λ(∆) is invertible,ERCT,λ(∆) > 0 and

γ ≥ γ∗T,λ(∆) ,
‖A(T∪∆)c

′(y −AcT,λ(∆))‖∞
ERCT,λ(∆)

(3.22)

then,

1. L(b) has a unique minimizer,̂x.

2. The minimizer,̂x, is equal todT,λ(∆), and thus is supported onT ∪∆.
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3. Its error can be bounded as

‖x− x̂‖2 ≤ γ
√

|∆|f1(∆) + λf2(∆)‖xT − µ̂T ‖2 + f3(∆)‖w‖2

where

f1(∆) ,
√

‖(AT
′AT + λIT )−1AT

′A∆PT,λ(∆)‖22 + ‖PT,λ(∆)‖22,

f2(∆) , ‖QT,λ(∆)−1‖2,

f3(∆) , ‖QT,λ(∆)−1AT∪∆
′‖2, (3.23)

PT,λ(∆) is defined in (3.17) andQT,λ(∆) in (3.15).

Corollary 2 (corollaries for mod-BPDN and BPDN) The result for mod-BPDN follows by setting

λ = 0 in Theorem 4. The result for BPDN follows by settingλ = 0, T = ∅ (and so∆ = N ).

This result is the same as [2, Theorem 8].

Remark 5 (smallestγ) Notice that the error bound above is an increasing function ofγ. Thusγ =

γ∗T,λ(∆) gives the smallest bound.

In words, Theorem 4 says that, ifQT,λ(∆) is invertible,ERCT,λ(∆) is positive, andγ is large

enough (larger thanγ∗), thenL(b) has a unique minimizer,̂x, andx̂ is supported onT ∪∆ = N ∪∆e.

This means that the only wrong elements that can possibly be part of the support of x̂ are elements

of ∆e. Moreover, the error between̂x and the truex is bounded by a value that is small as long as

the noise,‖w‖2, is small, the prior term,‖xT − µ̂T ‖2, is small andγ∗T,λ(∆) is small. By rewriting

y −AcT,λ(∆) = A(x− cT,λ(∆)) +w and using Lemma 7 (given in the Appendix B.2) one can upper

boundγ∗ by terms that are increasing functions of‖w‖2 and‖xT − µ̂T ‖2. Thus, as long as these are

small, the bound is small.

As shown in Proposition 2,QT,λ(∆) is invertible if λ > 0 andA∆ is full rank or if AT∪∆ is full

rank.

Next, we use the idea of [2, Corollary 10] to show thatERCT,0(∆) is anExact Recovery Coefficient

for mod-BPDN.

Remark 6 (ERC and exact recovery of mod-BPDN)For mod-BPDN,cT,0(∆) is the LS estimate when

x is supported onT∪∆. Using (3.20), (1.2), and the fact thatx is supported onN ⊆ T∪∆, it is easy to
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see that in the noise-free (w = 0) case,cT,0(∆) = xT∪∆. Hence the numerator ofγ∗T,0(∆) will be zero.

Thus, using Theorem 4, ifERCT,0(∆) > 0, the mod-BPDN error satisfies‖x− x̂‖2 ≤ γ
√

|∆|f1(∆).

Thus the mod-BPDN solution,x̂, will approach the truex asγ approaches zero. Moreover, as long as

γ < mini∈N |xi|√
|∆|f1(∆)

, at least the support of̂x will equal the true support,N 3.

We show a numerical comparison of the results of reg-mod-BPDN, mod-BPDNand BPDN in Table

3.1 (simulation details given in Chapter 3.4). Notice that BPDN needs90% of the measurements for its

sufficient conditions to start holding (ERC to become positive) whereas mod-BPDN only needs19%.

Moreover, even with90% of the measurements, the ERC of BPDN is just positive and very small. As

a result, its error bound is large (27% normalized mean squared error (NMSE)). Similarly, notice that

mod-BPDN needsn ≥ 19%m for its sufficient conditions to start holding (AT∪∆ to become full rank

which is needed forQT,0(∆) to be invertible). For reg-mod-BPDN which only needsA∆ to be full

rank,n = 13%m suffices.

Remark 7 A sufficient conditions comparison only provides a comparison of whena given result can

be applied to provide a bound on the reconstruction error. In other words, it tells us under what

conditions we can guarantee that the reconstruction error of a given approach will be small (below a

bound). Of course this does not mean that we cannot get small erroreven when the sufficient condition

does not hold, e.g., in simulations, BPDN provides a good reconstruction using much less than 90%

of the measurements. However, whenn < 90%m we cannot bound its reconstruction error using

Theorem 4 above.

3.4.3 Proof Outline

To prove Theorem 4, we use the following approach motivated by that of [2].

1. We first bound‖dT,λ(∆)−cT,λ(∆)‖2 by simplifying the necessary and sufficient condition for it

to be the minimizer ofL(b) whenb is supported onT ∪∆. This is done in Lemma 6 in Appendix

B.2.
3If we bounded thè∞ norm of the error as done in [2] we would get a looser upper bound on the allowedγ’s for this.
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2. We bound‖cT,λ(∆) − x‖2 using the expression forcT,λ(∆) in (3.20) and substitutingy =

AT∪∆xT∪∆+w in it (recall thatx is zero outsideT ∪∆). This is done in Lemma 7 in Appendix

B.2.

3. We can bound‖dT,λ(∆)− x‖2 using the above two bounds and the triangle inequality.

4. We use an approach similar to [2, Lemma 6] to find the sufficient conditions under whichdT,λ(∆)

is also the unconstrained unique minimizer ofL(b), i.e. x̂ = dT,λ(∆). This is done in Lemma 8

in Appendix B.2.

The last step (Lemma 8) helps prove the first two parts of Theorem 4. Combining the above four steps,

we get the third part (error bound). We give the lemmas in Appendix B.2. They are proved in Appendix

B.4.1, B.4.2 and B.4.3.

Two key differences in the above approach with respect to the result of[2] are

• cT,λ(∆) is the regularized LS estimate instead of the LS estimate in [2]. This helps obtain a

better and simpler error bound of reg-mod-BPDN than when using the LS estimate. Of course,

whenλ = 0 (mod-BPDN or BPDN),cT,0(∆) is just the LS estimate again.

• For reg-mod-BPDN (and also for mod-BPDN), the subgradient set of the`1 term is∂‖bT c‖1|b=dT,λ(∆)

and so anyφ in this set is zero onT , and only has‖φ∆‖∞ ≤ 1. Since|∆| � |N |, this helps to

get a tighter bound on‖cT,λ(∆)− dT,λ(∆)‖2 in step 1 above as compared to that for BPDN [2]

(see proof of Lemma 6 for details).

3.5 Tighter Bounds without Sufficient Conditions

The problem with the error bounds for reg-mod-BPDN, mod-BPDN, BPDNor LS-CS [60] is that

they all hold under different sufficient conditions. This makes it difficultto compare them. Moreover,

the bound is particularly loose whenn is such that the sufficient conditions just get satisfied. This is

because the ERC is just positive but very small (resulting in a very largeγ∗ and hence a very large

bound). To address this issue, in this section, we obtain a bound that holdswithout any sufficient

conditions and that is also tighter, while still being computable.

The key idea that we use is as follows:
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• we modify Theorem 4 to hold for “sparse-compressible” signals [60], i.e.for sparse signals,x,

in which some nonzero coefficients out of the set∆ are small (“compressible”) compared to the

rest; and then

• we minimize the resulting bound over all allowed split-ups ofx into non-compressible and com-

pressible parts.

Let ∆̃ ⊆ ∆ be such that the conditions of Theorem 4 hold for it. Then the first step involves

modifying Theorem 4 to bound the error for reconstructingx when we treatx∆\∆̃ as the “compressible”

part. The main difference here is in bounding‖cT,λ(∆̃) − x‖2 which now has a larger bound because

of x∆\∆̃. We do this in Lemma 9 in the Appendix B.3. Notice from the proofs of Lemma 6 and Lemma

8 in Appendix B.4.1 and B.4.3 that nothing in their result changes if we replace∆ by a ∆̃ ⊆ ∆.

Combining Lemma 9 with Lemmas 6 and 8 applied for∆̃ instead of∆ leads to the following corollary.

Corollary 3 Consider a∆̃ ⊆ ∆. If QT,λ(∆̃) is invertible,ERCT,λ(∆̃) > 0, andγ = γ∗T,λ(∆̃), then

‖x− x̂‖2 ≤ f(T, λ,∆, ∆̃, γ∗T,λ(∆̃)) (3.24)

where

f(T, λ,∆, ∆̃, γ) , γ

√

|∆̃|f1(∆̃) + λf2(∆̃)‖xT − µ̂T ‖2 + f3(∆̃)‖w‖2 + f4(∆̃)‖x∆\∆̃‖2, (3.25)

f4(∆̃) ,

√

‖QT,λ(∆̃)−1AT∪∆̃
′A∆\∆̃‖22 + 1, (3.26)

f1(·),f2(·), f3(·) are defined in (3.23) andγ∗T,λ(∆̃) in (3.22).

Proof: The proof is given in Appendix B.3.1.

In order to get a bound that depends only on‖xT − µ̂T ‖2, ‖x∆\∆̃‖2, the noise,w, and the sets

T,∆,∆e, we can further boundγ∗T,λ(∆̃) by rewritingy −AcT,λ(∆̃) = A(x− cT,λ(∆̃)) + w and then

bounding‖x− (cT,λ(∆̃))‖2 using Lemma 9. Doing this gives the following corollary.

Corollary 4 If QT,λ(∆̃) is invertible,ERCT,λ(∆̃) > 0, andγ = γ∗T,λ(∆̃), then

‖x− x̂‖2 ≤ g(∆̃) (3.27)
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where

g(∆̃) , g1‖xT − µ̂T ‖2 + g2‖w‖2 + g3‖x∆\∆̃‖2 + g4 (3.28)

g1 , λf2(∆̃)(

√

|∆̃|f1(∆̃)maxcor(∆̃)

ERCT,λ(∆̃)
+ 1),

g2 ,

√

|∆̃|f1(∆̃)f3(∆̃)maxcor(∆̃)

ERCT,λ(∆̃)
+ f3(∆̃),

g3 ,

√

|∆̃|f1(∆̃)f4(∆̃)maxcor(∆̃)

ERCT,λ(∆̃)
+ f4(∆̃),

g4 ,

√

|∆̃|‖A(T∪∆̃)c
′w‖∞f1(∆̃)

ERCT,λ(∆̃)
,

maxcor(∆̃) , max
i/∈(T∪∆̃)c

‖Ai
′AT∪∆‖2,

f1(·),f2(·), f3(·) andf4(·) are defined in (3.23) and (3.26), andγ∗T,λ(∆̃) in (3.22).

Proof: The proof is given in Appendix B.3.2.

Using the above corollary and minimizing over all allowed∆̃’s, we get the following result.

Theorem 5 Let

∆̃∗ , argmin
∆̃∈G

g(∆̃) (3.29)

where

G , {∆̃ : ∆̃ ⊆ ∆, ERCT,λ(∆̃) > 0, QT,λ(∆̃) is invertible} (3.30)

If γ = γ∗T,λ(∆̃
∗), then

1. L(b) has a unique minimizer,̂x, supported onT ∪ ∆̃∗.

2. The error bound is

‖x− x̂‖2 ≤ g(∆̃∗) (3.31)

(γ∗T,λ(∆̃) is defined in (3.22)).

Proof: This result follows by minimizing over all allowed̃∆’s from Corollary 4.

Compare Theorem 5 with Theorem 4. Theorem 4 holds only when the completeset∆ belongs toG,

whereas Theorem 5 holds always (we only need to setγ appropriately). Moreover, even when∆ does
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belong toG, Theorem 4 gives the error bound by choosing∆̃∗ = ∆. However, Theorem 5 minimizes

over all allowed∆̃’s, thus giving a tighter bound, especially for the case when the sufficient conditions

of Theorem 4 just get satisfied andERCT,λ(∆) is positive but very small. A similar comparison also

holds for the mod-BPDN and BPDN results.

The problem with Theorem 5 is that its bound is not computable (the computational cost is expo-

nential in|∆|). Notice thatg(∆̃∗) := min∆̃∈G g(∆̃) can be rewritten as

g(∆̃∗) , min
∆̃∈G

g(∆̃) = min
0≤k≤|∆|

min
Gk

g(∆̃) where

Gk , G ∩ {∆̃ ⊆ ∆ : |∆̃| = k} (3.32)

Let d := |∆|. The minimization overGk is expensive since it requires searching over all
(

d
k

)

sizek

subsets of∆ to first find which ones belong toGk and then find the minimum over all̃∆ ⊆ Gk. The

total computation cost to do the former for all setsG0,G1, . . .Gd is O(
∑d

k=0

(

d
k

)

) = O(2d), i.e. it is

exponential ind. This makes the bound computation intractable for large problems.

3.5.1 Obtaining a Computable Bound

In most cases of practical interest, the term that has the maximum variability over different sets in

Gk is ‖x∆\∆̃‖2. The multipliersg1, g2, g3 andg4 vary very slightly for different sets in a givenGk.

Using this fact, we can obtain the following upper bound onminGk
g(∆̃) which is only slightly looser

and also holds without sufficient conditions, but is computable in polynomial time.

Define∆̃∗∗(k) andBk as follows

∆̃∗∗(k) , arg min
{∆̃⊆∆,|∆̃|=k}

‖x∆\∆̃‖2

Bk ,











g(∆̃∗∗(k)) if ∆̃∗∗(k) ∈ Gk
∞ otherwise

(3.33)

Then, clearly

min
Gk

g(∆̃) ≤ Bk (3.34)

sinceminGk
g(∆̃) ≤ g(∆̃) for any∆̃ ∈ Gk and it is also less than infinity. For anyk, the set∆̃∗∗(k) can

be obtained by sorting the elements ofx∆ in decreasing order of magnitude and letting∆̃∗∗(k) contain
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the indices of thek largest elements. Doing this takesO(d log d) time since sorting takesO(d log d)

time. Computation ofBk requires matrix multiplications and inversions which areO(k3). Thus, the

total cost of doing this is at mostO(d4) which is still polynomial ind.

Therefore, we get the following bound that iscomputable in polynomial time and that still holds

without sufficient conditions and is much tighter than Theorem 4.

Theorem 6 Let

kmin , arg min
0≤k≤|∆|

Bk and

∆̃∗∗ , ∆̃∗∗(kmin) (3.35)

whereBk and∆̃∗∗(k) are defined in (3.33). Ifγ = γ∗T,λ(∆̃
∗∗),

1. L(b) has a unique minimizer,̂x, supported onT ∪ ∆̃∗∗.

2. The error bound is

‖x− x̂‖2 ≤ g(∆̃∗∗) (3.36)

(γ∗T,λ(∆̃) is defined in (3.22)).

Corollary 5 (corollaries for mod-BPDN and BPDN) The result for mod-BPDN follows by setting

λ = 0 in Theorem 6. The result for BPDN follows by settingλ = 0, T = ∅ (and so∆ = N ) in

Theorem 6.

Whenn ands , |N | are large enough, the above bound is either only slightly larger, or often

actually equal, to that of Theorem 5 (e.g. in Fig. 3.4(a),m = 256, n = 0.13m = 33, s = 0.1m = 26).

The reason for the equality is that the minimizing value ofk is the one that is small enough to ensure

thatg1, g2, g3, g4 are small. Whenk is small,g1, g2, g3, g4, ERC andQ(∆̃) have very similar values

for all sets∆̃ of the same sizek. In (3.28), the only term with significant variability for different sets∆̃

of the same sizek is ‖x∆\∆̃‖2. Thus, (a)argminGk
g(∆̃) = argminGk

‖x∆\∆̃‖2 and (b)Gk is equal

to {∆̃ ⊆ ∆, |∆̃| = k}. Thus, (3.34) holds with equality and so the bounds from Theorems 6 and 5 are

equal. Asn ands , |N | approach infinity,it is possible to use a law of large numbers (LLN) argument

to prove that both bounds will be equal with high probability (w.h.p.). The key idea will be the same as
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above: show that asn, s go to infinity, w.h.p.,g1, g2, g3, g4, Q andERC are equal for all sets̃∆ of any

given sizek. We will develop this result in future work.

3.6 Numerical Experiments

In this section, we show both upper bound comparisons and actual reconstruction error compar-

isons. The upper bound comparison only tells us that the performance guarantees of reg-mod-BPDN

are better than those for the other methods. To actually demonstrate that reg-mod-BPDN outperforms

the others, we need to compare the actual reconstruction errors. This section is organized as follows.

After giving the simulation model in 5.4.1, we show the reconstruction error comparisons for recov-

ering simulated sparse signals from random Gaussian measurements in 5.4.2.In 5.4.3, we show com-

parisons for recursive dynamic MRI reconstruction of a larynx image sequence. In this comparison,

we also show the usefulness of the Theorem 6 in helping us select a good value ofγ. In the last three

subsections, we show numerical comparisons of the results of the varioustheorems. The upper bound

comparisons of Theorem 6 and the comparison of the corresponding reconstruction errors suggests that

the bounds for reg-mod-BPDN and BPDN are tight under the scenarios evaluated. Hence, they can be

used as a proxy to decide which algorithm to use when. We show this for bothrandom Gaussian and

partial Fourier measurements.

3.6.1 Simulation Model

The notationz = ±a means that we generate each element of the vectorz independently and each

is either+a or−a with probability 1/2. The notationν ∼ N (0,Σ) means thatν is generated from a

Gaussian distribution with mean 0 and covariance matrixΣ. We usebac to denote the largest integer

less than or equal toa. Independent and identically distributed is abbreviated as iid. Also, N-RMSE

refers to the normalized root mean squared error.

We use the recursive reconstruction application [33, 25] to motivate the simulation model. In this

case, assuming that slow support and slow signal value change hold [see Fig. 1.2], we can use the

reconstructed value of the signal at the previous time asµ̂ and its support asT . To simulate the effect

of slow signal value change, we letxN = µN + ν whereν is a small iid Gaussian deviation and we let
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µ̂T∩N = µT∩N (and soxT∩N = µ̂T∩N + νT∩N ).

The extras set,∆e = T \ N , contains elements that got removed from the support at the current

time or at a few previous times (but so far did not get removed from the support estimate). In most

practical applications, only small valued elements at the previous time get removed from the support

and hence the magnitude ofµ̂ on∆e will be small. We useβs to denote this small magnitude, i.e. we

simulate(µ̂)∆e = ±βs.

The misses’ set at timet, ∆, definitely includes the elements that just got added to the support

at t or the ones that previously got added but did not get detected into the support estimate so far.

The new elements typically get added at a small value and their value slowly increases to a large one.

Thus, elements in∆ will either have small magnitude (corresponding to the current newly addedones),

or will have larger magnitude but still smaller than that of elements already inN ∩ T . To simulate

this, we do the following. (a) We simulate the elements onN ∩ T to have large magnitude,βl, i.e.

we let (µ)N∩T = ±βl. (b) We split the set∆ into two disjoint parts,∆1 and∆2 = ∆ \ ∆1. The

set∆1 contains the small (e.g. newly added) elements, i.e.(µ)∆1 = ±βs. The set∆2 contains the

larger elements, though still with magnitudes smaller than those inN ∩ T , i.e. (µ)∆2 = ±βm, where

βl ≥ βm ≥ βs.

In summary, we use the following simulation model.

(x)N = (µ)N + ν, ν ∼ N (0, σ2
pI)

(x)Nc = 0 (3.37)

where (µ)N∩T = ±βl

(µ)∆1 = ±βs, (µ)∆2 = ±βm

(µ)Nc = 0 (3.38)

and

(µ̂)T∩N = (µ)T∩N = ±βl

(µ̂)∆e = ±βs

(µ̂)T c = 0 (3.39)



www.manaraa.com

58

We generate the support ofx, N , of size|N |, uniformly at random from[1, ...,m]. We generate∆

with size|∆| and∆e with size|∆e| uniformly at random fromN and fromN c respectively. The set

∆1 of size|∆1| = b|∆|/2c is generated uniformly at random from∆. The set∆2 = ∆ \∆1. We let

T = N ∪∆e \∆. We generateµ and thenx using (3.38) and (3.37). We generateµ̂ using (3.39).

In some simulations, we simulated the more difficult case whereβm = βs. In this case, all elements

on∆ were identically generated and hence we did not need∆1.

3.6.2 Reconstruction Error Comparisons

In Fig. 3.1, we compare the Monte Carlo average of the reconstruction error of reg-mod-BPDN

with that of mod-BPDN, BPDN, weighted̀1 [26] given in (1.9), CS-residual given in (1.11), CS-mod-

residual given in (3.7) and modified-CS-residual[40] given in (3.8). Simulation was done according

to the model specified above. We used random Gaussian measurements in thissimulation, i.e. we

generatedA as ann ×m matrix with iid zero mean Gaussian entries and normalized each column to

unit `2 norm.

We experimented with two choices ofn, n = 0.13m (where reg-mod-BPDN outperforms mod-

BPDN) andn = 0.3m (where both are similar) and two values ofσ2
p, σ2

p = 0.001 (good prior) and

σ2
p = 0.1 (bad prior). For the cases of Fig 3.1(a) (n = 0.13m, σ2

p = 0.001) and Fig 3.1(b) (n = 0.13m,

σ2
p = 0.1), we used signal lengthm = 256, support size|N | = 0.1m = 26 and support extras size,

|∆e| = 0.1|N | = 3. The misses’ size,|∆|, was varied between 0 and0.2|N | (these numbers were

motivated by the medical imaging application, we used larger numbers than whatare shown in Fig.

1.2). We usedβl = 1, βm = 0.4 andβs = 0.2. The noise variance wasσ2
w = 10−5. For the last two

figures, Fig 3.1(c) (n = 0.3m, σ2
p = 0.001) and Fig 3.1(d) (n = 0.3m, σ2

p = 0.1), for whichn was

larger, we usedβm = βs = 0.25 which is a more difficult case for reg-mod-BPDN. For Fig. 3.1(c), we

also used a larger noise varianceσ2
w = 10−4. All other parameters were the same.

In Fig. 3.2, we show a plot of reg-mod-BPDN and BPDN from Fig 3.1(a) extended all the way to

|∆|/|N | = 1 (which is the same as∆ = N ). Notice that if|∆e| = 0, then the point|∆|/|N | = 1 of

reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But in this plot,|∆e| = 3 and hence the two

points are different, even though the errors are quite similar.
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For applications where some training data is available,γ andλ for reg-mod-BPDN can be chosen by

interpreting the reg-mod-BPDN solution as the maximum a posteriori (MAP) estimate under a certain

prior signal model (assumexT is Gaussian with mean̂µT and varianceσ2
p andxT c is independent of

xT and is iid Laplacian with parameterλp). This idea is explained in detail in [25]. However, there is

no easy way to do this for the other methods. Alternatively, choosingγ andλ according to Theorem

6 gives another good start point. We can do this for mod-BPDN and BPDN,but we cannot do this for

the other methods (we show examples using this approach later). For a fair error comparison, for each

algorithm, we selectedγ from a set of values[0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1].

We tried all these values for a small number of simulations (10 simulations) and then picked the best

one (one with the smallest N-RMSE) for each algorithm. For weighted`1 reconstruction, we also pick

the bestγ′ in (1.9) from the same set in the same way4. For reg-mod-BPDN,λ should be larger when

the signal estimate is good and should be decreased when the signal estimate isnot so good. We can use

λ = ασ2
w/σ

2
p to adaptively determine its value for different choices ofσ2

w andσ2
p. In our simulations,

we usedα = 0.2 for Fig. 3.1 (a), (b) and (d) andα = 0.05 for Fig. 3.1(c).

We fixed the chosenγ, γ′ andλ and did Monte Carlo averaging over 100 simulations. We conclude

the following. (1) When the signal estimate is not good (Fig. 3.1(b),(d)) or whenn is small (Fig.

3.1(a),(b)), CS-residual and CS-mod-residual have significantly larger error than reg-mod-BPDN. (2)

In case of Fig. 3.1(d) (n = 0.3m), they also have larger error than mod-BPDN. (3) In all four cases,

weighed`1 and mod-BPDN have similar performance. This is also similar to that of reg-mod-BPDN

in case ofn = 0.3m, but is much worse in case ofn = 0.13m. (4) We also show a comparison

with regmodBPDN-var in Fig. 3.1(a). Notice that it has larger errors than reg-mod-BPDN for reasons

explained in the beginning of this chapter.

3.6.3 Dynamic MRI application usingγ from Theorem 6

In Fig. 3.3, we show comparisons for simulated dynamic MR imaging of an actuallarynx image

sequence (Fig. 1.2 (a)(i)). The larynx image is not exactly sparse but isonly compressible in the

4To give an example, our finally selected numbers for Fig. 3.1(d) wereγ =
0.01, 0.001, 0.001, 0.001, 0.001, 0.001, 0.01, 0.01 for BPDN, mod-BPDN, reg-mod-BPDN, weighted̀1, LS-CS, CS-
residual, CS-mod-residual, mod-CS-residual respectively andγ′ = 0.0001
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wavelet domain. We used a two-level Daubechies-4 2D discrete wavelet transform (DWT). The99%-

energy support size of its wavelet transform vector,|Nt| ≈ 0.07m. Also, |∆t| ≈ 0.001m and|∆e,t| ≈

0.002m. We used a32× 32 block of this sequence and at each time and simulated undersampled MRI,

i.e. we selectedn 2D discrete Fourier transform (DFT) coefficients using the variable density sampling

scheme of [35], and added iid Gaussian noise with zero mean and varianceσ2
w = 10 to each of them.

Using a small32 × 32 block allows easy implementation using CVX (for full sized image sequences,

one needs specialized code). We usedn0 = 0.18m at t = 0 andn = 0.06m at t > 0.

We implemented dynamic reg-mod-BPDN as described in Algorithm 2. In this problem, the ma-

trix A = Fu ·W−1 whereFu contains the selected rows of the 2D-DFT matrix andW is the inverse

2D-DWT matrix (for a two-level Daubechies-4 wavelet). Reg-mod-BPDN was compared with sim-

ilarly implemented reg-mod-BPDN-var and CS-residual algorithms (CS-residual only solved simple

BPDN at t = 0). We also compared with simple BPDN (BPDN done for each frame separately).

For reg-mod-BPDN and reg-mod-BPDN-var, the support estimation threshold, ρ, was chosen as sug-

gested in [25]: we usedρ = 20 which is slightly larger than the smallest magnitude element in the

99%-energy support which is15. At t = 0, we usedT0 to be the set of indices of the wavelet approx-

imation coefficients. To chooseγ andλ we tried two different things. (a) We usedλ andγ from the

set [0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1] to do the reconstruction for a short train-

ing sequence (5 frames), and used the average error to pick the bestλ andγ. We call the resulting

reconstruction error plot reg-mod-BPDN-opt. (b) We computed the average of theγ∗ obtained from

Theorem 6 for the 5-frame training sequence and used this asγ for the test sequence. We selectedλ

from the above set by choosing the one that minimizes the average of the bound of Theorem 6 for the

5 frames. We call the resulting error plot reg-mod-BPDN-γ∗. The same two things were also done for

BPDN and CS-residual as well. For reg-mod-BPDN-var, we only did (a).

From Fig. 3.3, we can conclude the following. (1) Reg-mod-BPDN significantly outperforms the

other methods when using so few measurements. (2) Reg-mod-BPDN-var and reg-mod-BPDN have

similar performance in this case. (3) The reconstruction performance of reg-mod-BPDN usingγ∗ from

Theorem 6 is close to that of reg-mod-BPDN using the bestγ chosen from a large set. This indicates

that Theorem 6 provides a good way to selectγ in practice.
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3.6.4 Comparing the result of Theorem 4

In Table 3.1, we compare the result of Theorem 4 for reg-mod-BPDN, mod-BPDN and BPDN. We

usedm = 256, |N | = 26 = 0.1m, |∆| = 0.04|N | = |∆e|, σ2
p = 10−3, βl = 1 andβm = βs = 0.25.

Also, σ2
w = 10−5 and we variedn. For each experiment with a givenn, we did the following. We

did 100 Monte Carlo simulations. Each time, we evaluated the sufficient conditions for the bound

of reg-mod-BPDN to hold. We say the boundholds if all the sufficient conditions hold for at least

98 realizations. If this did not happen, we recordnot hold in Table 3.1. If this did happen, then we

recorded

√

E[bound2]
E[‖x‖22]

whereE[·] denotes the Monte Carlo average computed over those realizations for

which the sufficient conditions do hold. Here, “bound” refers to the right hand side of (3.23) computed

with γ = γ∗T,λ(∆) given in (3.22). An analogous procedure was followed for both mod-BPDN and

BPDN.

The comparisons are summarized in Table 3.1. For reg-mod-BPDN, we selectedλ from the set

[0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1] by picking the one that gave the smallest bound.

Clearly the reg-mod-BPDN result holds with the smallestn, while the BPDN result needs a very large

n (n ≥ 90%). Also even withn = 90%, the BPDN error bound is very large.

n Reg-mod-BPDN Mod-BPDN BPDN
0.13m 0.885 not hold not hold
0.19m 0.161 0.303 not hold
0.5m 0.0199 0.0199 not hold
0.9m 0.014 0.014 0.27

Table 3.1 Sufficient conditions and normalized bounds comparison of reg-mod-
-BPDN, mod-BPDN and BPDN. Signal lengthm = 256, support
size |N | = 0.1m, |∆| = 4%|N |, |∆e| = 4%|N |, σ2

w = 10−5 and
σ2
p = 10−3. “not hold” means the one or all of the sufficient conditions

does not hold.

3.6.5 Comparing Theorems 4, 5, 6

In Fig. 3.4 (a), we compare the results from Theorems 4, 5 and 6 for one simulation. We plotbound
‖x‖2

for |∆|/|N | ranging from 0 to 0.2. Also, we usedm = 256, |N | = 26, |∆e| = 0.1|N |, σ2
p = 10−3,
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βl = 1 andβm = βs = 0.25. Also, n = 0.13m andσ2
w = 10−5. We usedγ = γ∗ given in the

respective theorems, and we setλ = 10σ2
w/σ

2
p. We notice the following. (1) The bound of Theorem 4

is much larger than that of Theorem 5 or 6, even for|∆| = 0.04|N |. (2) For larger values of|∆|, the

sufficient conditions of Theorem 4 do not hold and hence it does not provide a bound at all. (3) For

reasons explained in Chapter 3.3, in this case, the bound of Theorem 6 is equal to that of Theorem 5.

Recall that the computational complexity of the bound from Theorem 5 is exponential in|∆|. However

if |∆| is small, e.g. in our simulations|∆| ≤ 5, this is still doable.

3.6.6 Upper bound comparisons using Theorem 6

In Fig. 3.4(b), we do two things. (1) We compare the reconstruction errorbounds from Theorem

6 for reg-mod-BPDN, mod-BPDN and BPDN and compare them with the bounds for LS-CS error

given in [60, Corollary 1]. All bounds hold without any sufficient conditions which is what makes this

comparison possible. (2) We also use theγ∗ given by Theorem 6 to obtain the reconstructions and

compute the Monte Carlo averaged N-RMSE. Comparing this with the Monte Carloaveraged upper

bound on the N-RMSE,

√

E[bound2]
E[‖x‖22]

, allows us to evaluate the tightness of a bound. HereE[·] denotes the

mean computed over 100 Monte Carlo simulations and “bound” refers to the right hand side of (3.36).

We usedm = 256, |N | = 26, |∆e| = 0.1|N |, σ2
p = 10−3, βl = 1, βm = βs = 0.25, and|∆| was

varied from 0 to0.2|N |. Also,n = 0.13m andσ2
w = 10−5.

From the figure, we can observe the following. (1) Reg-mod-BPDN has much smaller bounds than

those of mod-BPDN, BPDN and LS-CS. The differences between reg-mod-BPDN and mod-BPDN

bounds is minor when|∆| is small but increases as|∆| increases. (2) The conclusions from the recon-

struction error comparisons are similar to those seen from the bound comparisons, indicating that the

bound can serve as a useful proxy to decide which algorithm to use when(notice bound computation

is much faster than computing the reconstruction error). (3) Also, reg-mod-BPDN and mod-BPDN

bounds are quite tight as compared to the LS-CS bound. BPDN bound and error are both100%. 100%

error is seen because the reconstruction is the all zeros’ vector.

In Fig. 3.4(c), we did a similar set of experiments for the case whereA corresponds to a simulated

MRI experiment, i.e.A = Fu ·W−1 whereFu contains randomly selected rows of the 2D-DFT matrix
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andW is the inverse 2D-DWT matrix (for a two-level Daubechies-4 wavelet). We usedn = 0.17m

andσ2
w = 10−3. All other parameters were the same as in Fig. 3.4(b). Our conclusions arealso the

same.

The complexity for Theorem 6 is polynomial in|∆|whereas that of the LS-CS bound [60, Corollary

1] is exponential in|∆|. To also show comparison with the LS-CS bound, we had to choose a small

value ofm = 256 so that the maximum value of|∆| = 0.2|N | = 5 was small enough. In terms

of MATLAB time, computation of the Theorem 6 bound for reg-mod-BPDN took0.2 seconds while

computing the LS-CS bound took 1.2 seconds. For all methods except LS-CS, we were able to do the

same thing fairly quickly even form = 4096, or even larger. It took only8 seconds to compute the

bound of Theorem 6 whenm = 4096, n = 0.13m, |N | = 410 = 0.1m and|∆| = |∆e| = 0.1|N | =

41.
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Figure 3.1 The N-RMSE for reg-mod-BPDN, mod-BPDN, BPDN, LS-CS,
KF-CS, weighted̀ 1, CS-residual, CS-mod-residual and modified-C-
S-residual are plotted. Forn = 0.13m , reg-mod-BPDN has smaller
errors than those of mod-BPDN and the gap is larger when the sig-
nal estimate is good. Forn = 0.3m, the errors of reg-mod-BPDN,
mod-BPDN and weighted̀1 are close and all small.
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Figure 3.2 Plot of Fig 3.1(a) extended all the way to|∆|/|N | = 1 (which is the
same as∆ = N ). Notice that if|∆e| = 0, then the point|∆|/|N | = 1

of reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But in
our plot,|∆e| = 3 and hence the two points are different, even though
the errors are quite similar.
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Figure 3.3 Reconstructing a32× 32 block of the actual (compressible) larynx se-
quence from partial Fourier measurements. Measurementsn = 0.18m

for t = 0 andn = 0.06m for t > 0. Reg-mod-BPDN has the smallest
reconstruction error among all methods.
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Figure 3.4 In (a), we compare the three bounds from Theorem 4, 5 and 6for one
realization ofx. In (b) and (c), we compare the normalized average
bounds from Theorem 6 and reconstruction errors with random Gaus-
sian and partial Fourier measurements respectively.
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CHAPTER 4. Modified-CS-residual for Recursive Reconstructionof Highly

Undersampled Functional MRI Sequences

In previous four chapters, we have discussed algorithms and analyzedthe exact recovery conditions

or bounded the reconstruction errors. In this chapter, we study the application of modified-CS based

approaches for blood oxygenation level dependent (BOLD) contrast functional MR imaging (fMRI).

In particular, we show, via exhaustive experiments on actual MR scanner data for brain fMRI, that

our recently proposed approach for recursive reconstruction of sparse signal sequences, modified-CS-

residual, outperforms other existing CS based approaches. Modified-CS-residual exploits the fact that

the sparsity pattern of brain fMRI sequences and their signal values change slowly over time. It provides

a fast, yet accurate, reconstruction approach that is able to accuratelytrack the changes of the active

pixels, while using only about 30% measurements per frame. Significantly improved performance

over existing work is shown in terms of practically relevant metrics such as active pixel time courses,

activation maps and receiver operating characteristic (ROC) curves.

In BOLD contrast fMRI, a time-series ofT ∗
2 -weighted images are collected as the subject is pre-

sented a controlled stimulus. To achieve whole-brain coverage fMRI is typically performed at a low

spatial (e.g.,3 × 3 × 3 mm3 voxels) and temporal (e.g., volume repetition time of2 − 3 seconds)

resolution. This provides a sufficient signal-to-noise ratio for robust detection of BOLD contrast by

statistical testing. However, if CS based approaches can be applied to fMRI it may ultimately enable

higher spatial and temporal resolution functional brain imaging, which potentially provides a new view

of human brain function [61].

The application of CS to MRI was first developed in detail in [35]. The most straightforward appli-

cation of CS to fMRI images reconstruction would be to perform CS on each slice of data independently

(simple-CS). For time sequences, batch-CS [36] improves simple-CS by jointlyreconstructing the en-
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Figure 4.1 Slow support change plots for a simulated brain fMRI sequence(de-
tails are given in Chapter 4.3).Nt refers to the99% energy support
of the two-level Daubechies-4 2D discrete wavelet transform (DWT)
of the image at timet. |Nt| ≈ 0.05m. We the plot support changes,
additions and deletions, with respect to the previous frame

tire sequence by treating it as a 3D sparse signal. Because it uses sparsity also along the time axis, it

is able to achieve accurate reconstructions using much fewer measurementsthan simple-CS. But the

reconstruction can only be performed on the entirebatchof data after all sampling is completed. Also,

for an l-frame acquisition, its computational complexity is roughlyl2 times that of simple-CS, while

its memory requirement isl times that of simple-CS. In recent work, [37, 38] proposed Kt-FOCUSS,

which uses the fact that a sequence of MR image data is sparse in they − f domain wheref denotes

temporal frequency. The key idea is to reconstructkY − t “frames” using FOCUSS[39] wherekY

denotes the phase encoding direction (y-axis of the 2D discrete Fourier transform (DFT) plane). Kt-

FOCUSS is still a batch method, which means it is still (a) non-causal, i.e. it needs to wait to acquire

the entirel frame sequence before doing the reconstruction (or one needs to re-run it in a batch fashion

again at each time which is slow), and (b) its memory requirement is stilll times that of simple-CS. But

its reconstruction is fast because it is done on onekY − t “frame” at a time and because often it only

runs a a few iterations of FOCUSS starting from previous “frame” as initial guess. The same memory

and non-causality issues also remain with Kt-FOCUSS with motion compensation (MC) [37]. More-

over, as we demonstrate in our experiments, for the fMRI based BOLD contrast detection application
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that we study here, its performance is, in fact, slightly worse than our proposed recursive approach

(modified-CS-residual) because of its assumption of Fourier sparsity along the time axis – it tries to

recover the sparsest sum of sinusoids to represent the time sequence for a given pixel.

In recent work, we studied the problem of recursively reconstructinga time sequence of (approxi-

mately) sparse signals from highly undersampled measurements and proposed two sets of approaches

– LS-CS and KF-CS [33] and later modified-CS and modified-CS-residual[25, 40]. By “recursive”,

we mean that we use only the previous reconstruction and the current measurements’ vector to re-

cover the current signal. As a result, these are (a) causal approaches, i.e. they can recover the current

frame as soon as its MR data gets acquired; and (b) they have the same storage (memory) and com-

putational complexity as that of simple-CS (and hence much lower than that of batch methods), but

they can achieve significantly lower reconstruction errors than simple-CS when the available number

of measurements is too few for simple-CS.

In all the above works, we have done experiments only on either fully simulated data or simulated

MRI data, i.e. real medical image sequences, but random-sampled MRI is simulated by taking the 2D

discrete Fourier transform (DFT) of the image and randomly sampling it. Moreover, only the mean

squared error (MSE) has been used as the performance evaluation metric. But we know that when

using actual MR scanner data, (a) there are multiple sources of noise andmodeling error so that the

resulting 2D-DFT of the image is no longer conjugate symmetric (its inverse DFT isnot fully real);

and (b) randomly sampling the 2D-DFT plane is not a practical scanning approach. In practice, one

can only random sample in one direction e.g. one can only random sample rows or columns of the 2D-

DFT plane. (c) Moreover, it is well known to the image processing and medical imaging communities

that MSE over the entire image is not a useful performance metric since it does not capture errors in

individual pixels very well. But often errors in even a few pixels can be quite problematic, e.g. they

can indicate incorrect active regions.

In this chapter, we perform a detailed experimental evaluation of modified-CS-residual for

1. a real functional MRI application (that of detecting the active region in the brain as a stimulus is

provided to the subject);

2. with actual MR scanner data that is acquired in a practically sensible fashion (randomly sample
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the ky axis); and

3. using practically relevant performance metrics – activation maps and receiver operating charac-

teristic (ROC) curves.

Modified-CS relies on a key assumption that the sparsity pattern (support change in the sparsity basis)

changes slowly with time for most practical image sequences. We demonstrate this for brain fMRI

sequences in Fig. 4.1. Notice that the maximum support change is less than7% of the support size in

most cases and in the worst case it is less than10%. Denote the support estimate from the previous time

by T . The key idea of modified-CS is to find the solution that is sparsest outside ofT while satisfying

the data constraint.

Some other related approaches include Dynamic-LASSO [62] which is a causal but batch approach

(with very high computational and storage cost) and it assumes that the sparsity pattern of the image

sequencedoes notchange with time; or [48] which recovers the difference image by doing CS on

the measurement differences(CS-diff). Both CS-diff and our earlier work on LS-CS and KF-CS have

already been demonstrated to have worse performance than modified-CS [25, 40]. Approaches related

to modified-CS for a static problem but with partial support knowledge include [27, 26].

4.1 Problem Formulation

We formulate the problem for a single slice of fMRI acquired over time. Let(It)m1×m1 denote the

image at timet and letm := m2
1 be its dimension. The full sampling measurement model is

Yfull,t = St + Zt (4.1)

whereYfull,t is the measured k-space data at timet. St is the ideal k-space data andZt is the mea-

surement noise, which is modeled as a complex Gaussian noise. The image reconstructed from the full

Fourier samples,It, can be rewritten as

It = F ′Yfull,tF
′ = Itrue,t + ηt (4.2)

whereF is the DFT matrix andItrue,t is the ideal image reconstructed from noise-free k-space data.

ηt = F ′ZtF
′ is the degrading noise in image domain, which is complex and zero mean Gaussianwith
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varianceσ2
η. We further model the complex imageIt as follows. Each pixel is made up of the baseline

MR signal, the functional signal of interest, nuissance signals[63], andthe degrading noise signal. Then

we model a slice in an fMRI time-sequence as [64].

It(i, j) = Ib(i, j) + νt(i, j) + α(i, j) · bt(i, j) + ηt(i, j) (4.3)

Here,i, j are the pixel indices withi, j ∈ {1, . . . ,m}. Ib is the baseline MR signal which does not

change over time.bt(i, j) denotes the unit-amplitude BOLD signal shape in pixel(i, j), the exact form

of which depends on the hemodynamic response function (HDR) corresponding to the pixel.α(i, j)

is the non-negative amplitude of the BOLD signal in pixel(i, j) that will be equal to zero in inactive

pixels. νt is the nuissance signal, which are modeled only for completeness since we aimto faithfully

reconstructIt from highly undersampled data. From these definitions, the contrast-to-noise ratio (CNR)

of the BOLD signal in each pixel can be expressed asCNR(i, j) = α(i,j)
ση

. MR images, especially MR

brain images are known to be compressible in the wavelet transform domain[35]. Hence, we set up

the measurement model of CS as follows. LetXt denote the 2D discrete wavelet transform (DWT) of

the image representation from ideal k-space, i.e.Xt := WItrue,tW
′, whereW is the DWT matrix.

ThenYfull,t = FW ′XtWF + Zt. We capture a smaller number,n < m, of Fourier coefficients of the

images. Since we only sample in kY direction, this can be modeled by applying ann
m1
×m1 sampling

mask,M2D (which contains a single1 at a different location in each row and all other entries are zero)

to Yfull,t to obtain the measurementsYt,i.e. Yt = M2DYfull,t = M2D(FW ′XtWF + Zt). The above

can also be transformed to a 1D problem by using Kronecker product, denoted by
⊗

. Let yfull,t :=

vec(Yfull,t), xt := vec(Xt) andzt := vec(Zt). Here,vec(Xt) denotes the vectorization of the matrix

Xt formed by stacking the columns ofXt into a single column vector. Thenyfull,t = F1DW
′
1Dxt + zt

whereF1D = F
⊗

F , W ′
1D = W ′⊗W ′. An n×m maskM1D = Idm1

⊗

M2D is applied toyfull,t

to undersample the Fourier coefficients to obtainyt whereIdm1 is anm1 ×m1 identity matrix. The

above can be rewritten as

yt = Axt + zt, where A := HΦ, (4.4)

whereH := M1DF1D andΦ := W ′
1D. For our algorithm, we requireA be satisfyingS = (|T |+2|∆|)

RIP property[18].
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Our final goal is to detect the active pixels’ region from the reconstructedsequence, i.e. detect the

region wherebt(i, j) > 0.

4.2 Modified-CS-residual

BPDN[1] is the most commonly used method in noisy CS. Modified-BPDN[28] tries to find the

signal sparsest outside of the setT while satisfying the data constraint. For signal sequences with slow

changing support, we can useT = N̂t−1. When the measurements are few(smaller than what CS

needs), modified-BPDN is known to have much smaller reconstruction errorthan that of CS(as long as

|∆| and|∆e| are small) [28].

Furthermore, by using this fact that signal/image also changes slowly over time, we can apply

modified-BPDN on the observation residual computed using the previous signal estimate (or using the

first signal estimate), i.e. we can solve

argmin
b
‖yt −Axt,temp −Ab‖22 + γ‖bT c‖1 (4.5)

with x̂t,temp = x̂t−1 or x̂t,temp = x̂1. The reconstructed signalx̂t is then given by

x̂t = b̂+ x̂t,temp (4.6)

We refer the above as modified-CS-residual. Ifn is small andγ is not large enough, modified-BPDN

will not have a unique minimizer. Modified-CS-residual in (4.5) ensures that the chosen minimizer is

the one closest tôxt,temp. Assuming that̂xt,temp is a good initial estimate ofxt, this would be the

correct one. In our experiments, we usedx̂t,temp = x̂1, the baseline signal at the first frame. The entire

algorithm is summarized in Algorithm 3.

4.3 Experimental Results

In this section, we show experiments on real fMRI sequences. We evaluate the performance of

detection using ‘activation map’, ‘Receiver operating characteristic(ROC)’ and ’time course’. Two-

level Daubechies-4 2D discrete wavelet transform(DWT) is used as the sparsifying basis.Nt refers

to the99% energy support of the wavelet coefficients of each frame. Variable density undersampling
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Algorithm 3 Modified-CS-residual

Initialization: Do inverse DFT forx1 and setN̂1 = {k : |(x̂1)k| ≥ τ}. For t > 0, do,

1. Modified-CS-residual

(a) Setx̂t,temp = x̂1.

(b) Do Modified-CS-residual.Computêb = argminb ‖yt−Ax̂t,temp−Ab‖22+γ‖(b)N̂c
t−1
‖1.

(c) Compute the support.Setx̂t = x̂t,temp + b̂ and computeN̂t = {k : |(x̂t)k| ≥ τ}.

2. Output N̂t andx̂t. Incrementt and go to step 1.
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Figure 4.2 Comparing modified-CS-residual, Kt-FOCUSS with different itera-
tions and ME/MC, BPDN, CS-residual,and Batch CS with full sam-
pling. At t = 1, n = 100%m measurements are used. Fort > 1,
n = 0.3m measurements are used.

scheme(which samples from a distribution that has more weight on the low frequencies) [35] is used

in our experiments. The sampling mask,M2D, is varying for eacht. In our experiments, the recon-

struction of the whole sequences takes4 seconds for all BPDN, modified-CS-residual, CS-residual,

Kt-FOCUSS with 2 iterations.

4.3.1 Real Brain Sequence(Simulated Activation)

To quantify detection performance using ROC curves, we need to know theground truth for active

regions. Hence in the first experiment, we captured a rest brain sequence (brain fMRI when no stimulus

was provided to the subject) using a real MR scanner, but we added the activation later in software.
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Rest fMRI (TR/TE= 2500/24.3 ms,90 degree flip angle,3 mm slick thickness,22 cm FOV,64× 64

matrix, 90 volumes) was performed using a3T whole-body MR scanner and a gradient-echo echo-

planar imaging(EPI) acquisition sequence. We added synthetic BOLD contrast at an average CNR of

4 to pixels corresponding to motor activation on one slice. The64 × 64 slice image has23 active

pixels. The BOLD signal was created by convolving a bi-Gamma HDR model (6-s onset delay,4-s

FWHM) with binary-valued function representing a block stimulus (30 s active,30 s rest; start/end

in rest condition). 10 separate observations were generated by resampling with the wavestrapping

technique[65] the original rest fMRI data and adding activation to the appropriate pixels to compute

descriptive statistics and compute meaningful performance curves.

We compare modified-CS-residual, Kt-FOCUSS, BPDN, batch-CS, CS-residual with IDFT using

full sampling. CS-residual, an improved version of CS-diff, refers to doing BPDN on the observation

residual computed using the first reconstructed frame. Fig. 4.2 shows theROC curves of all methods.

From the figure, it is clear that modified-CS-residual has the best performance since the its ROC curve

is strictly higher than those of other methods and closest to full sampling. We donot show N-RMSE

plot since it can not show the detection performance. But modified-CS-residual has similar N-RMSE as

those of Kt-FOCUSS and CS-residual and they are much smaller than other methods. For Kt-FOCUSS,

increasing the number of iterations will not help improve the detection performance even if it can reduce

N-RMSE. With more iterations, the temporal DC component of Kt-FOCUSS reconstruction becomes

better while many other nonzero frequency components are eliminated. Hence, the reconstructed signal

is more ’flat’ with more iterations which worsens the detection for active pixels but reduces N-RMSE.

Similarly, Kt-FOCUSS with ME/MC also has smaller N-RMSE but worse detection performance. CS-

residual does not use the slow support change, therefore it has worse detection than modified-CS-

residual.

Time courses for one active pixel are shown in Fig. 4.3. It is also observed that modified-CS-

residual does best to track the time course of true(fully sampled) signal, thus providing good recon-

struction and detection.
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Figure 4.3 Time courses of one active pixel.

4.3.2 Real Brain Sequence(Real Activation)

For real data sequences, we cannot use ROC curves to compare the performances of different

methods since no ground truth is available. Our comparison is based on how the detected activation can

approximate the activation of IDFT using full Fourier samples. Activation maps for a given threshold

in t-test are used to study the detected activation. Different from the simulated sequence, the activations

of the real data are not so ideal. For active brain imaging, we used the sameexperimental setup as the

one in 4.3.1 except usingn = 0.33m measurements fort > 1. The activation maps are shown in

Fig. 4.4 for the reconstructions using modified-CS-residual, Kt-FOCUSS and BPDN compared with

full sampling when threshold for t-test is set the same for all algorithms. The Bonferroni-corrected

threshold is chosen as5 computed from the dataset. We easily observe that modified-CS-residual

has most active pixels detected and few false detection while both Kt-FOCUSSand BPDN has many

missing detection.
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(a) Full sampling (b) Modified-CS-residual

(c) Kt-FOCUSS (d) BPDN

Figure 4.4 Comparing activation maps for modified-CS-residual, Kt-FOCUSS,
and BPDN with full sampling for each reconstruction. We can see
modified-CS-residual has the closest detected regions to full sampling.
Modified-CS-residual only has 1 missing active pixel and 5 false ones
while Kt-FOCUSS has 4 missing and 11 false ones. BPDN has 7 miss-
ing active pixels and 2 false ones.
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CHAPTER 5. Conclusions and Future Directions

In this work we studied the problem of sparse reconstruction from noiseless or noisy undersampled

measurements when partial and partly erroneous, knowledge of the signal’s support and an erroneous

estimate of the signal values on the “partly known support” is also available. Denote the support

knowledge byT and the signal value estimate onT by µ̂T . We proposed and studied the solutions

modified-CS and regularized modified-BP for noiseless measurements as well as modified-BPDN and

regularized modified-BPDN for noisy measurements.

Modified-CS for noiseless measurements solves an`1 relaxation of the following problem: find the

signal that is sparsest outside ofT and that satisfies the data constraint. We derived sufficient conditions

for exact reconstruction using mod-CS. These are much weaker than those for CS when the sizes of the

unknown part of the support and of errors in the known part are smallcompared to the support size.

Simulation results showing greatly improved performance of mod-CS using bothrandom Gaussian and

partial Fourier measurements are shown on both sparse and compressiblesignals and image sequences.

An important extension of mod-CS, Regularized modified-BP, was developed that also uses prior signal

estimate knowledge. We obtained the exact reconstruction conditions for reg-mod-BP and argued that

if some of the inequality constraints are active and if even a subset of the set of active constraints

satisfies certain conditions, then reg-mod-BP achieves exact recoveryunder weaker conditions than

what mod-CS needs. A practical situation where this would happen is when both the signal and its

estimate are quantized. In other cases, the conditions are only as weak as those for mod-CS. In either

case they are much weaker than those for BP as long asT is a good support estimate. We also provided

the reconstruction error bound when the exact recovery can not happen. Similarly, the error bound is

smaller or at least as large as that for mod-CS. From simulations, we see thateven without any active

constraints, the reg-mod-BP reconstruction error is much lower than that of mod-CS.
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We also proposed a modification of the BPDN idea, modified-BPDN, for sparse reconstruction

from noisy measurements when a part of the support is known, and bounded its reconstruction error.

A key feature of our work is that the bounds that we obtain are computable.Hence, we used Monte

Carlo to show that the average value of the bound increases as the unknown support size or the size

of the error in the known support increases and mod-BPDN requires weaker conditions than BPDN

needs. Also, Regularized Modified-BPDN, the extension of mod-BPDN, was proposed when signal

estimate is also available. We bounded its reconstruction error and introduced the tightest bounds for

regularized modified-BPDN and modified-BPDN. We showed how to obtain computable error bounds

that hold without any sufficient conditions. This made it easy to compare bounds for the various

approaches (corresponding results for mod-BPDN and BPDN follow asdirect corollaries). Empirical

error comparisons with these and many other existing approaches are alsoprovided.

In this work, we also studied the problem of recursively and causally reconstructing a sequence

of fMRI sequences from a reduced number of Fourier measurements. We demonstrated improved

reconstruction and activation pattern detection performance of our proposed solution, modified-CS-

residual on the real fMRI sequences, compared to existing work.

In ongoing work, we want to evaluate the utility of reg-mod-BPDN for recursive functional MR

imaging to detect brain activation patterns in response to stimuli [66]. On the other end, we are also

working on obtaining conditions under which it will remain “stable” (its error will be bounded by a

time-invariant and small value) for a recursive recovery problem. In [59], this has been done for the

constrained version of reg-mod-BPDN. That result uses the restrictedisometry constants (RIC) and

the restricted orthogonality constants (ROC) [18, 19] in its sufficient conditions and bounds. However,

this means that the conditions and bounds are not computable. Also, since thestability holds under a

different set of sufficient conditions and has a different error bound than that for mod-CS [67] or LS-CS

[33] or CS [19], comparison of the various results is difficult. An open question is how to extend the

results of the current work (which are computable) to show the stability of unconstrained reg-mod-

BPDN. In future, we also want to do joint real-time detection and reconstruction to further improve

performance. Also, higher spatial and temporal resolution sequences will be experimented.
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APPENDIX A. Appendix for the Proof of Exact Reconstruction Conditions of

Regularized Modified-BP

Recall thatk = |T |, u = |∆|, e = |∆e| ands = |N |.

A.1 Proof of Proposition 1

The proof follows by contradiction. Suppose that we can find two different solutionsb1 andb2 that

satisfyy = Ab1 = Ab2 and have the samè0 norm,u, alongT c. Thusb1 is nonzero alongT (or a

subset of it) and some set∆1 of sizeu while b2 is nonzero alongT (or a subset of it) and some set∆2

also of sizeu. The sets∆1 and∆2 may or may not overlap. ThusA(b1 − b2) = 0. Since(b1 − b2) is

supported onT ∪∆1 ∪∆2, this is equivalent toAT∪∆1∪∆2(b1 − b2)T∪∆1∪∆2 = 0. But if δk+2u < 1,

AT∪∆1∪∆2 is full rank and so the only way this can happen is ifb1 − b2 = 0, i.e b1 = b2.

Therefore there can be only one solution with`0 normu alongT c that satisfies that data constraint.

Sincex is one such solution, any other solution has to be equal tox.

A.2 Proof of Lemma 1

Denote a minimizer of (2.14) byb. Sincey = Ax andx satisfies (2.10),x is feasible for (2.14).

Thus,

‖bT c‖1 ≤ ‖xT c‖1 = ‖x∆‖1. (A.1)
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Next, we use the conditions onw given in Lemma 1 and the fact thatx is supported onN ⊆ T ∪∆ to

show that‖bT c‖1 ≥ ‖xT c‖1 and hence‖xT c‖1 = ‖bT c‖1. Notice that

‖bT c‖1 =
∑

j∈∆
|xj + bj − xj |+

∑

j /∈T∪∆
|bj | ≥

∑

j∈∆
|xj + bj − xj |+

∑

j /∈T∪∆
w′Ajbj (A.2)

≥
∑

j∈∆
sgn(xj)(xj + (bj − xj)) +

∑

j /∈T∪∆
w′Aj(bj − xj) (A.3)

= ‖x∆‖1 +
∑

j /∈T
w′Aj(bj − xj) = ‖x∆‖1 + w′(Ab−Ax)−

∑

j∈T
w′Aj(bj − xj)(A.4)

= ‖x∆‖1 −
∑

j∈T
w′Aj(bj − µ̂j + µ̂j − xj) (A.5)

= ‖x∆‖1 −
∑

j∈Ta+

w′Aj(bj − µ̂j − ρ)−
∑

j∈Ta-

w′Aj(bj − µ̂j + ρ) (A.6)

≥ ‖x∆‖1 = ‖xT c‖1 (A.7)

In the above, the inequality in (A.2) follows becausew′Aj ≤ |w′Aj | < 1 for j /∈ T ∪∆ and because

|bj | ≥ bj . Inequality (A.3) uses the fact that|z| ≥ sgn(b)z for any two scalarsz andb and thatxj = 0

for j /∈ T ∪ ∆. In (A.4), the first equality uses sgn(xj)xj = |xj | andw′Aj = sgn(xj) for j ∈ ∆.

The second equality just rewrites the second term in a different form. In (A.5), we use the fact that

Ab = Ax = y (since bothb andx are feasible) to eliminatew′(Ab − Ax). Equation (A.6) uses

w′Aj = 0 for j ∈ Tin and the definitions ofTa+ andTa- given in (2.15). Finally, (A.7) follows because

−∑j∈Ta+
w′Aj(bj − µ̂j − ρ) −∑j∈Ta-

w′Aj(bj − µ̂j + ρ) ≥ 0. This holds since−ρ ≤ bj − µ̂j ≤ ρ

for all j ∈ T ; w′Aj ≥ 0 for j ∈ Ta+; andw′Aj ≤ 0 for j ∈ Ta-.

Both inequalities (A.1) and (A.2)-(A.7) can hold only when‖bT c‖1 = ‖xT c‖1, i.e. all the inequali-

ties in (A.2)-(A.7) hold with equality. Consider the inequality in (A.2). Since|w′Aj | < 1 for j /∈ T∪∆,

this holds with equality only ifbj = 0 for all j /∈ T ∪∆. SinceAb = y = Ax and since bothb andx

are supported onT ∪∆ (or on its subset),AT∪∆(bT∪∆ − xT∪∆) = 0. Sinceδk+u < 1, AT∪∆ has full

rank. Therefore, this means thatbT∪∆ = xT∪∆. Thus, we can conclude thatb = x, i.e.,x is the unique

minimizer.

A.3 Proof of Lemma 2

This proof uses the following simple facts. Letλmin(M), λmax(M) denote the minimum and

maximum eigenvalues of a matrixM . (i) For positive semi-definite matrices,M ,Q, ‖M‖ = λmax(M);
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‖MQ‖ ≤ ‖M‖‖Q‖; λmin(M − Q) ≥ λmin(M) − λmax(Q); and for a positive definite matrix,M ,

‖M−1‖ = 1/λmin(M); (ii) for any matrices,B, C, ‖B − C‖ ≤ ‖B‖ + ‖C‖; (iii) for disjoint sets

T1, T2, ‖AT1
′AT2‖ ≤ θ|T1|,|T2| [25, equation (3)]; (iv)1−δ|T1| ≤ λmin(AT1

′AT1) ≤ λmax(AT1
′AT1) ≤

1 + δ|T1| [18]; (v) M(Tb) is a projection matrix and soM(Tb)M(Tb)
′ = M(Tb) and‖M(Tb)‖ = 1;

(vi) ‖sgn(x∆)‖2 =
√
u.

The lemma assumes thatδu + δkb + θ2kb,u < 1. This implies that (a)δu < 1 and soA∆
′A∆

is positive definite and sou ≤ n; (b) δkb < 1 and soATb

′ATb
is positive definite andM(Tb) is

well-defined; and (c) as we show next,A∆
′M(Tb)A∆ is positive definite and hence full rank. Since

A∆
′M(Tb)A∆ = A∆

′A∆−A∆
′ATb

(ATb

′ATb
)−1ATb

′A∆ is a difference of two positive semi-definite

matrices, thus,

λmin(A∆
′M(Tb)A∆) ≥ λmin(A∆

′A∆)− λmax(A∆
′ATb

(ATb

′ATb
)−1ATb

′A∆) ≥ (1− δu)−
θ2kb,u

1− δkb
> 0 (A.8)

Thus,A∆
′M(Tb)A∆ is positive definite. The first inequality in (A.8) follows from fact (i). The second

one follows becauseλmin(A∆
′A∆) ≥ (1−δu) (using fact (iv));λmax(A∆

′ATb
(ATb

′ATb
)−1ATb

′A∆) =

‖A∆
′ATb

(ATb

′ATb
)−1ATb

′A∆‖ ≤ ‖A∆
′ATb
‖ ‖(ATb

′ATb
)−1‖ ‖ATb

′A∆‖ (using fact (i));‖A∆
′ATb
‖ =

‖ATb

′A∆‖ ≤ θkb,u (using fact (iii)); and‖(ATb

′ATb
)−1‖ = 1

λmin(ATb
′ATb

)
≤ 1

1−δkb
(sinceATb

′ATb
is

positive definite, this follows using fact (i) and fact (iv)). The third inequality of (A.8) follows because

(1 − δu) −
θ2kb,u
1−δkb

=
1−δu−δkb+δuδkb−θ2kb,u

1−δkb
> 0. Both the numerator and the denominator are positive

because we have assumed thatδu + δkb + θ2kb,u < 1.

Using fact (v),A∆
′M(Tb)A∆ = A∆

′M(Tb)M(Tb)
′A∆. Thus, using the above,A∆

′M(Tb)M(Tb)
′A∆

is positive definite and hence has full ranku. Thus, theu× n fat matrix,A∆
′M(Tb) has full rank,u.

To prove the lemma, we first try to construct ann×1 vector,w̃, that satisfies the first two conditions

of the lemma. Then, we show that we can find an exceptional setE so that the constructed̃w andE

satisfy all the required conditions. Anỹw that satisfiesATb

′w̃ = 0 lies in the null space ofATb

′

and hence is of the form̃w = M(Tb)γ. To satisfy the second condition, we need aγ that satisfies

A∆
′M(Tb)γ = sgn(x∆). As shown above,A∆

′M(Tb) is full rank and so this system of equations has

a solution (in fact has infinitely many solutions). We can compute the minimum`2 norm solution in

closed form asγ = M(Tb)
′A∆(A∆

′M(Tb)M(Tb)
′A∆)

−1sgn(x∆). SinceM(Tb)M(Tb)
′ = M(Tb),
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w̃ = M(Tb)γ can be rewritten as

w̃ = M(Tb)A∆(A∆
′M(Tb)A∆)

−1sgn(x∆) (A.9)

Using the definition ofTa+g, Ta-g given in (2.17) in Theorem 2, we can see thatw̃ satisfies the first two

conditions of the lemma. Recall thatAi
′w > 0 for all i ∈ Ta+g is equivalent toATa+g

′w � 0, and

similarly,Ai
′w < 0 for all i ∈ Ta-g is equivalent toATa-g

′w ≺ 0.

Consider any seťTd disjoint withT ∪∆ of size|Ťd| ≤ š. Then,

‖AŤd

′w̃‖2 ≤ ‖AŤd

′M(Tb)A∆‖ ‖(A∆
′M(Tb)A∆)

−1‖ ‖sgn(x∆)‖2

≤ (θš,u +
θš,kbθu,kb
1− δkb

)
1

1− δu −
θ2
u,kb

1−δkb

√
u = akb(u, š)

√
u (A.10)

Notice thatakb(u, š) is positive because we have assumed thatδu + δkb + θ2kb,u < 1. The bound in

(A.10) follows using the simple facts given in the beginning. We obtain (A.10) as follows. Consider

the first term‖AŤd

′M(Tb)A∆‖. Using the definition ofM(Tb) and fact (ii), ‖AŤd

′M(Tb)A∆‖ ≤

‖AŤd

′A∆‖+ ‖AŤd

′ATb
(ATb

′ATb
)−1ATb

′A∆‖. Using fact (iii),‖AŤd

′A∆‖ ≤ θš,u, ‖AŤd

′ATb
‖ ≤ θš,kb

and‖ATb

′A∆‖ ≤ θu,kb . SinceATb

′ATb
is positive definite, using fact (i) and fact (iv),‖(ATb

′ATb
)−1‖ =

1
λmin(ATb

′ATb
)
≤ 1

1−δkb
. Thus, we get‖AŤd

′M(Tb)A∆‖ ≤ (θš,u +
θš,kbθu,kb
1−δkb

). Consider the sec-

ond term‖(A∆
′M(Tb)A∆)

−1‖. SinceA∆
′M(Tb)A∆ is positive definite, using fact (i) and (A.8),

‖(A∆
′M(Tb)A∆)

−1‖ = 1
λmin(A∆

′M(Tb)A∆)
≤ 1

(1−δu)−
θ2
u,kb

1−δkb

. Using fact (vi), the third term,‖sgn(x∆)‖2 =
√
u.

Define the set,E, asE := {j ∈ (T ∪ ∆)c : |Aj
′w̃| > akb (u,š)

√
u√

š
}. Notice that|E| must obey

|E| < š since otherwise we can contradict (A.10) by takingŤd ⊆ E. Since|E| < š andE is disjoint

with T ∪ ∆, (A.10) holds forŤd ≡ E, i.e., ‖AE
′w̃‖2 ≤ akb(u, š)

√
u. Also, by definition ofE,

|Aj
′w̃| ≤ akb (u,š)

√
u√

š
, for all j /∈ T ∪∆ ∪ E. Thusw̃ satisfies the third condition of the lemma.

Finally, ‖w̃‖2 ≤ ‖M(Tb)‖ ‖A∆‖ ‖(A∆
′M(Tb)A∆)

−1‖ √u ≤ Kkb(u)
√
u. This follows using fact

(v); ‖A∆‖ ≤
√
1 + δu; and fact (i) and (A.8). Thus, we have found aw̃ andE that satisfy all required

conditions.
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A.4 Proof of Lemma 3

LetM = M(T ).

The lemma assumes thatδs + δk + θ2k,s < 1. This means that (a)δk < 1 and soAT
′AT is

positive definite; (b)δs < 1 and so for any setTd of size|Td| ≤ s, ATd

′ATd
is positive definite; and

(c) as we show next, for any setTd of size |Td| ≤ s, ATd

′MATd
is also positive definite. Notice

thatATd

′MATd
= ATd

′ATd
− ATd

′AT (AT
′AT )

−1AT
′ATd

which is the difference of two symmetric

non-negative definite matrices. LetB1 denote the first matrix andB2 the second one. Use the fact that

λmin(B1−B2) ≥ λmin(B1)+λmin(−B2) = λmin(B1)−λmax(B2) whereλmin(.), λmax(.) denote the

minimum, maximum eigenvalue. Sinceλmin(B1) ≥ (1−δs) andλmax(B2) = ‖B2‖ ≤ ‖(ATd
′AT )‖2

1−δk
≤

θ2s,k
1−δk

, thus

λmin(ATd

′MATd
) ≥ 1− δs −

θ2s,k
1− δk

> 0 (A.11)

(the last inequality holds becauseδs + δk + θ2k,s < 1). Thus,ATd

′MATd
is positive definite.

SinceM is a projection matrix,MM ′ = M , and soATd

′MATd
= ATd

′MM ′ATd
. Thus, from

above,ATd

′MM ′ATd
is also positive definite. Thus,ATd

′M is full rank.

Any w̃ that satisfiesAT
′w̃ = 0 will be of the form

w̃ = [I −AT (AT
′AT )

−1AT
′]γ := Mγ (A.12)

We need to find aγ s.t. ATd

′w̃ = c, i.e. ATd

′Mγ = c. SinceATd

′M is full rank, this system of

equations has a solution (in fact, it has infinitely many solutions). Letγ = M ′ATd
η. Thenη =

(ATd

′MM ′ATd
)−1c = (ATd

′MATd
)−1c. This follows becauseMM ′ = M2 = M sinceM is a

projection matrix. Thus,

w̃ = MM ′ATd
(ATd

′MATd
)−1c = MATd

(ATd

′MATd
)−1c (A.13)

Consider any seťTd with |Ťd| ≤ š disjoint withT ∪ Td. Then

‖AŤd

′w̃‖2 ≤ ‖AŤd

′MATd
‖ ‖(ATd

′MATd
)−1‖ ‖c‖2 (A.14)
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Consider the first term from the right hand side (RHS) of (A.14).

‖AŤd

′MATd
‖ ≤ ‖AŤd

′ATd
‖+ ‖AŤd

′AT (AT
′AT )

−1AT
′ATd
‖

≤ θš,s +
θš,k θs,k
1− δk

(A.15)

This follows in a fashion exactly analogous to the derivation of the upper bound on the first term of

(A.10) in the proof of Lemma 2. Consider the second term from the RHS of (A.14). SinceATd

′MATd

is positive definite,

‖(ATd

′MATd
)−1‖ =

1

λmin(ATd

′MATd
)

(A.16)

Using (A.11),

‖(ATd

′MATd
)−1‖ ≤ 1

1− δs −
θ2
s,k

1−δk

(A.17)

Recall that the denominator is positive because we have assumed thatδs+ δk + θ2k,s < 1. Using (A.15)

and (A.17) to bound (A.14), we get that for any setŤd with |Ťd| ≤ š,

‖AŤd

′w̃‖2 ≤
θš,s +

θš,k θs,k
1−δk

1− δs −
θ2
s,k

1−δk

‖c‖2 = ak(s, š)‖c‖2 (A.18)

Notice thatak(s, š) is non-decreasing ink, s, š. Define an exceptional set,E, as

E := {j ∈ (T ∪ Td)
c : |Aj

′w̃| > ak(s, š)√
š
‖c‖2} (A.19)

Notice that|E| must obey|E| < š since otherwise we can contradict (A.18) by takingŤd ⊆ E.

Since |E| < š andE is disjoint with T ∪ Td, (A.18) holds forŤd ≡ E, i.e. ‖AE
′w̃‖2 ≤

ak(s, š)‖c‖2. Also, by definition ofE, |Aj
′w̃| ≤ ak(s,š)√

š
‖c‖2, for all j /∈ T ∪ Td ∪ E. Finally,

‖w̃‖2 ≤ ‖MATd
(ATd

′MATd
)−1‖ ‖c‖2

≤ ‖M‖ ‖ATd
‖ ‖(ATd

′MATd
)−1‖ ‖c‖2

≤
√
1 + δs

1− δs −
θ2
s,k

1−δk

‖c‖2 = Kk(s)‖c‖2 (A.20)

since‖M‖ = 1 (holds becauseM is a projection matrix). Thus we have found aw̃ and a setE that

satisfy all conditions of the lemma.
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A.5 Proof of Theorem 2

We construct aw that satisfies the conditions of Lemma 1 by first applying Lemma 2 and then

applying Lemma 3 iteratively as explained below. Finally we definew using (A.25) below. At iteration

zero, we apply Lemma 2 witȟs ≡ u. Lemma 2 can be applied becausekb ≤ k andδu + δk + θ2k,u < 1

(holds because condition 1 of the theorem holds). Thus, there exists aw1 and an exceptional setTd,1,

disjoint withT ∪∆, of size less thaňs = u, s.t.

Aj
′w1 > 0, ∀ j ∈ Ta+g

Aj
′w1 < 0, ∀ j ∈ Ta-g

Aj
′w1 = 0, ∀ j ∈ Tb

Aj
′w1 = sgn(xj), ∀ j ∈ ∆

|Td,1| < u

‖ATd,1

′w1‖2 ≤ akb(u, u)
√
u

|Aj
′w1| ≤ akb(u, u), ∀j /∈ T ∪∆ ∪ Td,1

‖w1‖2 ≤ Kkb(u)
√
u (A.21)

At iteration r > 0, apply Lemma 3 withTd ≡ ∆ ∪ Td,r (so thats ≡ 2u), cj ≡ 0 ∀ j ∈ ∆, cj ≡

Aj
′wr ∀ j ∈ Td,r and š ≡ u. Call the exceptional setTd,r+1. Lemma 3 can be applied because

δ2u + δk + θ2k,2u < 1 (condition 1 of the theorem). From Lemma 3, there exists awr+1 and an
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exceptional setTd,r+1, disjoint withT ∪∆ ∪ Td,r, of size less thaňs = u, s.t.

Aj
′wr+1 = 0 ∀ j ∈ T

Aj
′wr+1 = 0, ∀ j ∈ ∆

Aj
′wr+1 = Aj

′wr, ∀ j ∈ Td,r

|Td,r+1| < u

‖ATd,r+1

′wr+1‖2 ≤ ak(2u, u)‖ATd,r

′wr‖2

|Aj
′wr+1| ≤

ak(2u, u)√
u
‖ATd,r

′wr‖2

∀j /∈ T ∪∆ ∪ Td,r ∪ Td,r+1

‖wr+1‖2 ≤ Kk(2u)‖ATd,r

′wr‖2 (A.22)

Notice that|Td,1| < u (at iteration zero) and|Td,r+1| < u (at iterationr) ensures that|∆∪ Td,r| < s =

2u for all r ≥ 1.

The last three equations of (A.22), combined with the sixth equation of (A.21), simplify to

‖ATd,r+1

′wr+1‖2 ≤ ak(2u, u)
rakb(u, u)

√
u

|Aj
′wr+1| ≤ ak(2u, u)

rakb(u, u),

∀j /∈ T ∪∆ ∪ Td,r ∪ Td,r+1 (A.23)

‖wr+1‖2 ≤ Kk(2u)ak(2u, u)
r−1akb(u, u)

√
u

(A.24)

We can define

w ,

∞
∑

r=1

(−1)r−1wr (A.25)

Sinceak(2u, u) < 1, ‖wr‖2 approaches zero withr, and so the above summation is absolutely conver-

gent, i.e.w is well-defined.
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From the first four equations of (A.21) and first two equations of (A.22),

Aj
′w > 0, ∀ j ∈ Ta+g

Aj
′w < 0, ∀ j ∈ Ta-g

Aj
′w = 0, ∀ j ∈ Tb

Aj
′w = Aj

′w1 = sgn(xj), ∀ j ∈ ∆ (A.26)

ConsiderAj
′w = Aj

′∑∞
r=1(−1)r−1wr for somej /∈ T ∪∆. If for a givenr, j ∈ Td,r, thenAj

′wr =

Aj
′wr+1 (gets canceled by ther + 1th term). If j ∈ Td,r−1, thenAj

′wr = Aj
′wr−1 (gets canceled by

ther − 1th term). SinceTd,r andTd,r−1 are disjoint,j cannot belong to both of them. Thus,

Aj
′w =

∑

r:j /∈Td,r∪Td,r−1

(−1)r−1Aj
′wr, ∀j /∈ T ∪∆ (A.27)

Consider a givenr in the above summation. Sincej /∈ Td,r ∪ Td,r−1 ∪ T ∪∆, we can use (A.23) to get

|Aj
′wr| ≤ ak(2u, u)

r−1akb(u, u). Thus, for allj /∈ T ∪∆,

|Aj
′w| ≤

∑

r:j /∈Td,r∪Td,r−1

ak(2u, u)
r−1akb(u, u)

≤ akb(u, u)

1− ak(2u, u)
(A.28)

Sinceak(2u, u) + akb(u, u) < 1 (condition 2 of the theorem),

|Aj
′w| < 1, ∀j /∈ T ∪∆ (A.29)

Thus, from (A.26) and (A.29), we have found aw that satisfies the conditions of Lemma 1. From

condition 1 of the theorem,δk+u < 1. Applying Lemma 1, the claim follows.

A.5.1 Proof of Lemma 5

Let ∆1 denote the set of indices ofh with the |∆| largest values outside ofT ∪∆ and∆2 denote

the indices of the next|∆| largest values and so on. We bound the error in3 parts: hT , h∆∪∆1 and

h(T∪∆∪∆1)c and we can obtain the following theorem. First, we bound‖hT ‖2 by using our second

constraint. Sincex andx̂ are both feasible, so

‖hT ‖2 ≤ ‖xT − µT ‖2 + ‖x̂T − µT ‖2 ≤ 2ρ
√
k (A.30)
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Next, we bound‖h(T∪∆∪∆1)c‖2.

‖h(T∪∆∪∆1)c‖2 ≤
∑

j≥2

‖h∆j
‖2 ≤

1√
u
‖h(T∪∆)c‖1 (A.31)

Sincex̂ = x+ h is the minimizer of (2.14) and since bothx andx̂ are feasible,

‖xT c‖1 ≥ ‖(x+ h)T c‖1 ≥ ‖x∆‖1 − ‖h∆‖1 + ‖h(T∪∆)c‖1 − ‖x(T∪∆)c‖1 (A.32)

and sincex(T∪∆)c = 0 then

‖h(T∪∆)c‖1 ≤ ‖h∆‖1 (A.33)

Combining this with (A.31), and using‖h∆‖1√
u
≤ ‖h∆‖2, we get

‖h(T∪∆∪∆1)c‖2 ≤
∑

j≥2

‖h∆j
‖2 ≤ ‖h∆‖2

Next, since bothx andx̂ are feasible,

Ah = A(x̂− x) = 0 (A.34)

To upper bound‖h∆∪∆1‖2, use RIP to get

(1− δ2u)‖h∆∪∆1‖22 ≤ ‖Ah∆∪∆1‖22 (A.35)

To bound the right hand side of the above, notice thatAh∆∪∆1 = Ah−∑j≥2Ah∆j
−AhT and thus

‖Ah∆∪∆1‖22 =< Ah∆∪∆1 , Ah > −
∑

j≥2

< Ah∆∪∆1 , Ah∆j
> − < Ah∆∪∆1 , AhT > (A.36)

Using (A.34),

| < Ah∆∪∆1 , Ah > | = 0 (A.37)

Using RIP and (A.34),

|
∑

j≥2

< Ah∆∪∆1 , Ah∆j
> | ≤ |

∑

j≥2

< Ah∆, Ah∆j
> |+ |

∑

j≥2

< Ah∆1 , Ah∆j
> |

≤
√
2δ2u‖h∆∪∆1‖2‖h∆‖2 (A.38)
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Finally, using RIP and (A.30),

| < Ah∆∪∆1 , AhT > | ≤ δk+2u‖h∆∪∆1‖2‖hT ‖2 (A.39)

≤ δk+2u‖h∆∪∆1‖22ρ
√
k (A.40)

Combining the above5 equations, we get

(1− δ2u)‖h∆∪∆1‖2 ≤ 2δk+2uρ
√
k +
√
2δ2u‖h∆‖2 (A.41)

Using‖h∆‖2 ≤ ‖h∆∪∆1‖2 and simplifying,

‖h∆∪∆1‖2 ≤
2
√
kδk+2u

1− (
√
2 + 1)δ2u

ρ (A.42)

Combining with (A.34) and (A.30), we get

‖h‖2 ≤ ‖h∆∪∆1‖2 + ‖h(T∪∆∪∆1)c‖2 + ‖hT ‖2 ≤ 2‖h∆∪∆1‖2 + 2ρ ≤ B1 (A.43)

A.6 Causal MAP Interpretation of Dynamic RegModCS

The solution of (2.22) becomes a causal MAP estimate under the following assumptions. Let

p(X|Y ) denote the conditional PDF ofX of givenY and letδ(X) denote the Dirac delta function.

Assume that

1. the random processes{xt}, {yt} satisfy the hidden Markov model property;p(yt|xt) = δ(yt −

Axt) (re-statement of the observation model); and

p(xt|xt−1) = p((xt)Nt−1 |xt−1)p((xt)Nc
t−1
|xt−1),where

p((xt)Nt−1 |xt−1) = N ((xt)Nt−1 ; (xt−1)Nt−1 , σ
2
pI)

p((xt)Nc
t−1
|xt−1) =

(

1

2λp

)|Nc
t−1|

exp

(

−
‖(xt)Nc

t−1
‖1

λp

)

i.e. givenxt−1 (and hence givenNt−1), (xt)Nt−1 and(xt)Nc
t−1

are conditionally independent;

(xt)Nt−1 is Gaussian with mean(xt−1)Nt−1 while (xt)Nc
t−1

is zero mean Laplace.

2. xt−1 is perfectly estimated fromy0, y1, . . . yt−1, and

p(xt−1|y0, . . . yt−1) = δ






xt−1 −







(x̂t−1)N̂t−1

0N̂c
t−1
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3. x̂t is the solution of (2.22) withγ =
λp

2σ2
p
.

If the first two assumptions above hold, it is easy to see that the “causal posterior” at timet,

p(xt|y1, . . . yt), satisfies

p(xt|y1, . . . yt) = Cδ(yt −Axt)e
− ‖(xt)T−(x̂t−1)T ‖22

2σ2
p e

− ‖(xt)Tc‖1
λp

whereT := N̂t−1 andC is the normalizing constant. If the last assumption also holds, then clearly the

solution of (2.22) is a maximizer ofp(xt|y1, . . . yt), i.e. it is a causal MAP solution.

The MLE ofλp, σ
2
p can be computed from a training time sequence of signals,x̃0, x̃1, x̃2, . . . x̃tmax

as follows. Denote their supports (β%-energy supports in case of compressible signal sequences) by

Ñ0, Ñ1, . . . Ñtmax . Then the MLE is

λ̂p =

∑tmax
t=1 ‖(x̃t)Ñc

t−1
‖1

∑tmax
t=1 |Ñ c

t−1|
,

σ̂2
p =

∑tmax
t=1 ‖(x̃t − x̃t−1)Ñt−1

‖22
∑tmax

t=1 |Ñt−1|
(A.44)
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APPENDIX B. Appendix for the Proof of Reconstruction Error Bound of Regularized

Modified-BPDN

B.1 Proof of Proposition 1

Whenλ = 0, QT,0(S) = AT∪S ′AT∪S . Thus,QT,λ(S) is invertible iff AT∪S is full rank. When

λ > 0, QT,λ(S) is as defined in (3.15). Apply block matrix inversion lemma







A B

C D







−1

=







(A−BD
−1

C)−1 −(A−BD
−1

C)−1
BD

−1

−D−1
C(A−BD

−1
C)−1

D
−1 +D

−1
C(A−BD

−1
C)−1

BD
−1







with A = AT
′AT +λIT , B = AT

′AS , C = AS
′AT andD = AS

′AS , clearlyQT,λ(S) is invertible iff

AS
′AS andAT

′RAT+λIT are invertible whereR := [I−AS(AS
′AS)

−1A′
S ]. WhenAS is full rank, (i)

AS
′AS is full rank; and (ii)R is a projection matrix. ThusR = R′R and soAT

′RAT = (RAT )
′(RAT )

is positive semi-definite. As a result,AT
′RAT + λIT is positive definite and thus invertible. Hence,

whenAS is invertible,QT,λ(S) is also invertible.

B.2 Proof of Theorem 4

In this subsection, we give the three lemmas for the proof of Theorem 4.To keep notation simple we

remove the subscriptsT,λ fromQ(∆), M , P (∆), d(∆), c(∆), ERC(∆) in this and other Appendices.

Lemma 6 Suppose thatQ(∆) is invertible, then

‖d(∆)− c(∆)‖2 ≤ γ
√

|∆| · f1(∆) (B.1)

Lemma 6 can be obtained by setting∇L(b) = 0 and then using block matrix inversion onQ(∆).

The proof of Lemma 6 is in Appendix B.4.1. Next,‖c(∆) − x‖2 can be bounded using the following

lemma.
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Lemma 7 Suppose thatQ(∆) is invertible. Then

‖c(∆)− x‖2 ≤ λf2(∆)‖xT − µ̂T ‖2 + f3(∆)‖w‖2 (B.2)

The proof of Lemma 7 is in Appendix B.4.2.

Lemma 8 If Q(∆) is invertible,ERC(∆) > 0, andγ ≥ γ∗(∆), thenL(b) has a unique minimizer

which is equal tod(∆) .

Lemma 8 can be obtained in a fashion similar to [2, 28]. Its proof is given in Appendix B.4.3.

Combining Lemmas 6, 7 and 8, and using the fact‖d(∆)−x‖2 ≤ ‖d(∆)−c(∆)‖2+‖c(∆)−x‖2,

we get Theorem 4.

B.3 Proof of Theorem 5

The following lemma is needed for the proof of the corollaries leading to Theorem 5.

Lemma 9 Suppose thatQ(∆̃) is invertible. Then

‖c(∆̃)− x‖2 ≤ λf2(∆̃)‖xT − µ̂T ‖2 + f3(∆̃)‖w‖2 + f4(∆̃)‖x∆\∆̃‖2 (B.3)

Sincec(∆̃) is only supported onT ∪ ∆̃ andy = AT∪∆̃xT∪∆̃ +A∆\∆̃x∆\∆̃ +w, the last term of (B.3)

can be obtained by separatingx∆\∆̃ out. The proof of Lemma 9 is given in Appendix B.4.4.

Using Lemma 9, we can obtain Corollary 3 and then Corollary 4. Then minimize over all allowed

∆̃’s in Corollary 3, we get Theorem 5. The proof of Corollary 3 and 4 aregiven as follows.

B.3.1 Proof of Corollary 3

Notice from the proof of Lemma 6 and Lemma 8 that nothing in the result changesif we replace

∆ by a∆̃ ⊆ ∆. By Lemma 6 for∆̃, we are able to bound‖d(∆̃) − c(∆̃)‖2. Hence, we get the first

term of (3.25). Next, invoke Lemma 9 to bound‖c(∆̃)− x‖2 and we can obtain the rest three terms of

(3.25). Lemma 8 for̃∆ gives the sufficient conditions under whichd(∆̃) is the unique unconstrained

minimizer ofL(b).
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B.3.2 Proof of Corollary 4

Corollary 4 is obtained by boundingγ∗(∆̃). γ∗(∆̃) = ‖A(T∪∆̃)c
′(y − Ac(∆̃))‖∞/ERC(∆̃) can

be bounded by rewritingy −Ac(∆̃) = AT∪∆(xT∪∆ − (c(∆̃))T∪∆) +w and then bounding‖xT∪∆ −

(c(∆̃))T∪∆‖2 = ‖x− c(∆̃)‖2 using Lemma 9. Doing this, we get

‖A(T∪∆̃)c
′(y −Ac(∆̃))‖∞

≤ max
i/∈T∪∆̃

|Ai
′AT∪∆(xT∪∆ − (c(∆̃))T∪∆)|+ |Ai

′w|

≤ max
i/∈T∪∆̃

‖Ai
′AT∪∆‖2‖xT∪∆ − (c(∆̃))T∪∆)‖2 + |Ai

′w|

≤ maxcor(∆̃)λf2(∆̃)‖xT − µT ‖2 + maxcor(∆̃)f3(∆̃)‖w‖2

+maxcor(∆̃)f4(∆̃)‖x∆\∆̃‖2 + ‖A(T∪∆̃)c
′w‖∞

Using the above inequality to boundγ∗(∆̃) and replacingγ in f(T, λ,∆, ∆̃, γ), given in (3.25), by this

bound, we can get (3.27).

B.4 Proof of Lemmas 6, 7, 8, 9

B.4.1 Proof of Lemma 6

We use the approach of [2, Lemma 3]. We can minimize the functionL(b) over all vectors sup-

ported on setT ∪∆ by minimizing:

F (b) =
1

2
‖y −AT∪∆bT∪∆‖22 +

1

2
λ‖bT − µ̂T ‖22 + γ‖b∆‖1 (B.4)

SinceQ(∆) is invertible,F (b) is strictly convex as a function ofbT∪∆. Then at the unique minimizer,

d(∆), 0 ∈ ∇F (b)|b=d(∆). Let∂‖bT c‖1|b=d(∆) denote the subgradient set of‖bT c‖1 atb = d(∆). Then

clearly anyφ in this set satisfies

φT = 0 (B.5)

‖φT c‖∞ ≤ 1 (B.6)

Now, 0 ∈ ∇F (b)|b=d(∆) implies that

(AT∪∆
′AT∪∆)[d(∆)]T∪∆ −AT∪∆

′y + λ







[d(∆)]T − µ̂T

0∆






+ γφT∪∆ = 0 (B.7)
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Simplifying the above equation, we get

[d(∆)]T∪∆ = Q(∆)−1(AT∪∆
′y + λ







µ̂T

0∆






− γφT∪∆) (B.8)

Therefore, using (B.5) and (3.20), we have

[c(∆)]T∪∆ − [d(∆)]T∪∆ = Q(∆)−1







0T

γφ∆






(B.9)

Since

Q(∆) =







AT
′AT + λIT AT

′A∆

A∆
′AT A∆

′A∆






, (B.10)

using the block matrix inversion lemma







A B

C D







−1

=







A
−1 +A

−1
B(D−CA

−1
B)−1

CA
−1 −A−1

B(D−CA
−1

B)−1

−(D−CA
−1

B)−1
CA

−1 (D−CA
−1

B)−1







with A = AT
′AT + λIT , B = AT

′A∆, C = A∆
′AT andD = A∆

′A∆ and usingφT = 0, we obtain

[c(∆)]T∪∆ − [d(∆)]T∪∆ =







−γ(AT
′AT + λI|T |)

−1ATA∆(A∆
′MA∆)

−1φ∆

γ(A∆
′MA∆)

−1φ∆







Since‖φ∆‖∞ ≤ 1, the bound of (B.1) follows.

B.4.2 Proof of Lemma 7

Recallc(∆) is given in (3.20). Since bothx andc(∆) are zero outsideT ∪∆, then‖c(∆)−x‖2 =

‖[c(∆)]T∪∆ − xT∪∆‖2. With y = Ax+ w andAx = AT∪∆xT∪∆, we have

AT∪∆
′y = AT∪∆

′(AT∪∆xT∪∆ + w) (B.11)

NoticeA′
T∪∆AT∪∆ = Q(∆)− λ







IT 0T,S

0S,T 0S,S






. Using (B.11), we obtain the following equation

AT∪∆
′y = Q(∆)xT∪∆ − λ







xT

0∆






+AT∪∆

′w (B.12)
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Then, using (3.20) we can obtain

[c(∆)]T∪∆ − xT∪∆ = λQ(∆)−1







µ̂T − xT

0∆






+Q(∆)−1AT∪∆

′w

Finally, this gives (B.2).

B.4.3 Proof of Lemma 8

The proof is similar to that in [2] and [28]. Recall thatd(∆) minimizes the functionL(b) over allb

supported onT ∪∆. We need to show that ifγ ≥ γ∗(∆), thend(∆) is the unique global minimizer of

L(b).

The idea is to prove under the given condition, any small perturbationh on d(∆) will increase

functionL(d(∆)),i.e.L(d(∆) + h)− L(d(∆)) > 0, ∀‖h‖∞ ≤ ε for ε small enough. Then sinceL(b)

is a convex function,d(∆) will be the unique global minimizer[2].

Similar to [28], we first split the perturbation into two partsh = u + v whereu is supported on

T ∪∆ andv is supported on(T ∪∆)c. Clearly‖u‖∞ ≤ ‖h‖∞ ≤ ε. We consider the casev 6= 0 since

the casev = 0 is already covered in Lemma 1. Then

L(d(∆) + h) =
1

2
‖y −A(d(∆) + u)−Av‖22 +

1

2
λ‖[d(∆)]T + uT + vT − µ̂T ‖22 + γ‖(d(∆) + u)T c + vT c‖1

Then, we can obtain

L(d(∆) + h)− L(d(∆)) = L(d(∆) + u)− L(d(∆))

+
1

2
‖Av‖22 − 〈y −Ad(∆), Av〉+ 〈Au,Av〉+ γ‖vT c‖1

Sinced(∆) minimizesL(b) over all vectors supported onT ∪ ∆, L(d(∆) + u) − L(d(∆)) ≥ 0.

Then sinceL(d(∆) + u) − L(d(∆)) ≥ 0 and ‖Av‖22 ≥ 0, we need to prove that the rest are

positive,i.e.,γ‖vT c‖1 − 〈y − Ad(∆), Av〉 + 〈Au,Av〉 ≥ 0. Instead, we can prove this by proving

a stronger conditionγ‖vT c‖1 − |〈y − Ad(∆), Av〉| − |〈Au,Av〉| ≥ 0. Since〈y − Ad(∆), Av〉 =

v′A′(y −Ad(∆)) andv is supported on(T ∪∆)c,

|〈y −Ad(∆), Av〉| = |v(T∪∆)c
′A(T∪∆)c

′(y −Ad(∆))|

≤ ‖v‖1‖A(T∪∆)c
′(y −Ad(∆))‖∞
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Thus,

|〈y −Ad(∆), Av〉| ≤ max
ω/∈T∪∆

|〈y −Ad(∆), Aω〉‖v‖1

Meanwhile,

|〈Au,Av〉| ≤ ‖A′Au‖∞‖v‖1 ≤ ε‖A′A‖∞‖v‖1 (B.13)

And ‖v‖1 = ‖vT c‖1 sincev is supported on(T ∪∆)c ⊆ T c. Then what we need to prove is

[

γ − max
ω/∈T∪∆

|〈y −Ad(∆), Aω〉| − ε‖A′A‖∞
]

‖v‖1 > 0 (B.14)

Since we can selectε > 0 as small as possible, then we just need to show

γ − max
ω/∈T∪∆

|〈y −Ad(∆), Aω〉| > 0 (B.15)

Sincey−Ad(∆) = (y−Ac(∆)) +A(c(∆)− d(∆)), and by Lemma 1 we knowA(c(∆)− d(∆)) =

γMA∆(A∆
′MA∆)

−1φ∆ and since‖φ∆‖∞ ≤ 1, we conclude thatd(∆) is the unique global mini-

mizer if

‖A(T∪∆)c
′(y −Ac(∆))‖∞ < γ

[

1− max
ω/∈T∪∆

‖P (∆)A∆
′MAω‖1

]

(B.16)

Next, we will show thatd(∆) is also the unique global minimizer under the following condition

‖A(T∪∆)c
′(y −AcT,λ(∆))‖∞ = γ

[

1− max
ω/∈T∪∆

‖P (∆)A∆
′MAω‖1

]

(B.17)

Since the perturbationh 6= 0, thenu 6= 0 or v 6= 0. Therefore, we will discuss the following three

cases.

1. u 6= 0. In this case, we knowL(d(∆) + u)− L(d(∆)) > 0 sinced(∆) is the unique minimizer

over all vectors supported onT ∪∆. Therefore,L(d(∆) + h)− L(d(∆)) > 0 if (B.17) holds.

2. u = 0, v 6= 0 andv is not in the null space ofA, i.e.,Av 6= 0. In this case, we know‖Av‖22 > 0.

Hence,L(d(∆) + h)− L(d(∆)) > 0 when (B.17) holds.

3. u = 0, v 6= 0 andAv = 0. In this case,L(d(∆) + h)− L(d(∆)) = γ‖vT c‖1. Thus,L(d(∆) +

h)− L(d(∆)) > 0 if γ > 0. Clearly,L(d(∆) + h)− L(d(∆)) > 0 when (B.17) holds.

Finally, combining (B.16) and (B.17), we can conclude thatd(∆) is the unique global minimizer if the

following condition holds

‖A(T∪∆)c
′(y −Ac(∆))‖∞ ≤ γERC(∆) (B.18)
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B.4.4 Proof of Lemma 9

Consider a∆̃ ⊆ ∆ such thatA∆̃ has full rank. SinceAT∪∆̃
′y = AT∪∆̃

′(AT∪∆̃xT∪∆̃ + w +

A∆\∆̃x∆\∆̃), expanding these terms we have

AT∪∆̃
′y = Q(∆)xT∪∆̃ − λ







xT

0∆̃






+AT∪∆̃

′w +AT∪∆̃
′A∆\∆̃x∆\∆̃ (B.19)

Then, using this in the expression forc(∆̃) from (3.20), we get

[c(∆̃)]T∪∆ − xT∪∆ =













λQ(∆̃)−1







µ̂T − xT

0∆̃







0∆\∆̃













+







Q(∆̃)−1AT∪∆̃
′w

0∆\∆̃






+







Q(∆̃)−1AT∪∆̃
′A∆\∆̃x∆\∆̃

−x∆\∆̃






(B.20)

Therefore, we get (B.3).

B.5 Sufficient Conditions’ Comparison using RIC and ROC

We briefly compare the results for reg-mod-BPDN, mod-BPDN and BPDN, primarily by compar-

ing the sufficient conditions required for them to hold. The comparison of the bounds is not easy since

each holds under a different set of sufficient conditions. This will be done later using the results of

Section IV which hold without any sufficient conditions. For the comparisonof sufficient conditions,

we use the restricted isometry constant (RIC),δS and restricted orthogonality constant (ROC),θS,S′

[18] defined next. These depend only on the sizes of the setsT , ∆ andN and hence make a theoretical

comparison easier. However the comparison can only be qualitative. The RIC and ROC are not com-

putable (computation complexity is exponential in the set size) and hence cannot be used for numerical

comparisons. On the other hand, the ERC and the bounds obtained based on the ERC approach are

computable and can be used for a quantitative numerical comparison.

Consider mod-BPDN versus BPDN first. Let us compare their ERC’s. Using the facts that‖AT
′A∆‖2 ≤

θ|T |,|∆| , ‖(AT
′AT + λIT )

−1‖2 ≤ 1/(1 − δ|T | + λ) and the fact that for a vectorz of length l,
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‖z‖1 ≤
√
l‖z‖2,

ERCT,λ(∆) ≥ 1−
√

|∆|‖PT,λ(∆)‖2‖A∆
′MT,λAω‖2

≥ 1−
√

|∆|
(θ|∆|,1 +

θ|∆|,|T |θ|∆|,1
1−δ|T |+λ )

1− δ|∆| −
θ2|T |,|∆|

1−δ|T |+λ

(B.21)

where the numerator of the second term comes from bounding‖A∆
′MT,λAω‖2 and the denominator of

the second term comes from bounding‖PT,λ(∆)‖2. In practice, for example in recursive reconstruction

applications like real-time dynamic MRI, usually|∆| ≈ |∆e| � |N | and |N | ≈ |T | ≈ |T ∪ ∆|

[40]. Under this assumption, when fewer measurements are available (butstill enough to ensure that

δ|N | < 1), the denominator for the second term ofERC∅,0(N) (BPDN),1− δ|N |, will be smaller than

that ofERCT,0(∆) (mod-BPDN),1− δ|∆| −
θ2|T |,|∆|
1−δ|T |

. Also,
√

|N | in its numerator will be larger than
√

|∆| for mod-BPDN, while the other numerator terms will be similar in both cases. This can result in

a smaller (and possibly negative) lower bound on the ERC for BPDN.

To compare reg-mod-BPDN and mod-BPDN, notice that mod-BPDN needsAT∪∆ to be full rank

where as reg-mod-BPDN only needsA∆ to be full rank which is much weaker.

We show a numerical comparison in Table 3.1 (simulation details given in Chapter5.4). Notice

that BPDN needs90% measurements for its ERC to become positive where as mod-BPDN only needs

19%. Moreover even with90% measurements, its ERC is just positive and very small. As a result its

error bound is large (27% normalized mean squared error (NMSE)). Similarly notice that mod-BPDN

needsn ≥ 19% while for reg-mod-BPDNn = 13% also suffices.

Remark 8 A sufficient conditions’ comparison only provides a comparison of when a given result can

be applied to provide a bound on the reconstruction error. For example,in simulations, of course BPDN

provides a good reconstruction using much lesser than 90% measurements. However, whenn < 90%

we cannot bound its reconstruction error using Theorem 4 above (for BPDN this is the same as the

result of [2]). We address this issue in the next section.

B.5.1 Equivalence between Theorem 5 and Theorem 6 bounds

We can use the weak law of large numbers (WLLN) to argue that asn, s , |N | approach to infinity

the bound from Theorem 6 converges to that of Theorem 5 in probability.We give the basic idea here.
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The complete proof will be in future work. The WLLN argument applies when

• Each element ofA is iid with zero mean and variance1/n, i.e. A = 1√
n
Z where each element

of Z is iid with zero mean and unit variance.

• The noisew is bounded iǹ 2 norm, i.e.‖w‖2 ≤ η and

• n, s→∞

WLLN can be used to argue that asn, s → ∞, with high probability (w.h.p.),ERC(∆̃) and the

multipliersg1, g2, g3, g4 depend only on the size,k, of the set∆̃, i.e. they are the same for all sets∆̃

of a given size. Thus, the only term ing(∆̃) that varies for different sets̃∆ ∈ Gk is ‖x∆\∆̃‖2. Thus

argminGk
g(∆̃) = argminGk

‖x∆\∆̃‖2. SinceERC also only depends onk, for a givenk, either

ERC(k) > 0 or ERC(k) < 0. WhenERC(k) > 0, Gk = {∆̃ ⊆ ∆, |∆̃| = k}, where as when

ERC(k) < 0, Gk is empty. The minimum value over an empty set is infinity. Thus,minGk
‖x∆\∆̃‖2 =

Bk. Using (3.36), (3.32) and (3.35), this means thatg(∆̃∗) = g(∆̃∗∗), i.e. the bounds from Theorems

5 and 6 are equal.

The WLLN argument is as follows. Note that all terms ing1, g2, g3, g4 andERC that depend on

∆̃ are functions of eitherA∆̃
′A∆̃ orAT

′A∆̃ orA∆̃
′MT,λA∆̃ orA′

T∪∆̃w ConsiderA∆̃
′A∆̃.

(A∆̃
′A∆̃)i,j =











∑n
r=1A

2
i,r =

1
n

∑n
r=1 Z

2
i,r if i = j

∑n
r=1Ai,rAj,r =

1
n

∑n
r=1 Zi,rZj,r if i 6= j

ClearlyE[Z2
i,r] = 1 and its variance,V ar[Z2

i,r] = 3 where asE[Zi,rZj,r] = 0 whileV ar[Zi,rZj,r] = 1.

Here,E[·] andV ar[·] denote the expectation and variance computed over the distribution ofA. Thus by

WLLN, asn→∞, A∆̃
′A∆̃ approaches the identity matrix,Ik w.h.p.. A similar argument can be made

for each element ofAT
′A∆̃ to show that this approaches the zero matrix asn→∞. A similar argument

can also be made forMT,λ whens := |N | (and hence|T |) goes to infinity to show that all its diagonal

elements converge to one value and all the non-diagonal ones convergeto another value. This fact can

then be used to make a WLLN argument for each element ofA∆̃
′MT,λA∆̃. Now considerg4 which

contains the term‖A(T∪∆)c
′w‖∞. Notice that(A(T∪∆)c

′w)i =
∑n

j=1wjAj,i. Taking expectations

only over the elements ofA, E[(A(T∪∆)c
′w)i] = 0 andV ar[(A(T∪∆)c

′w)i] =
∑n

j=1w
2
j
1
n ≤

η2

n . Thus
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by WLLN, each element of the vectorA(T∪∆)c
′w approaches zero, and hence its infinity norm also

approaches zero w.h.p.. Thus, w.h.p., for a given sizek, all these three matrices and‖A(T∪∆)c
′w‖∞,

and as a result all ofERC, g1, g2, g3, g4, converge to a value that does not depend on the set∆̃.
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