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Xi

ABSTRACT

In this work, we study the problem of reconstructing a sparse signal &dimited number of
its linear projections when the following knowledge is available. (1) We arengpartial, and partly
erroneous, knowledge of the signal’s support, denote@.b{2) We are also given an erroneous esti-
mate of the signal values GR. Alternatively, in recursive reconstruction applications, like real-time
dynamic MRI, one can use the support estimate and the signal value estiomatthé previous time
instant. We presented algorithms by modifying Compressive Sensing (@§)the partly erroneous
support and also the erroneous signal estimate for both noiselessiandneasurements. The idea of
our proposed solution is to solve a convex relaxation of the following pnabfend the signal that is
sparsest outside the sEf while being “close enough” to signal estimate’Brand satisfying the data
constraint. We obtain sufficient conditions for exact reconstructiorgusiodified-CS and regularized
modified-BP. These are much weaker than those needed for CS whezdha# the unknown part
of the support is small compared to the support size. We also proposmssimodified-BPDN and
regularized modified-BPDN for noisy measurements using the similar ideabmahe computable
and tighter bounds without any sufficient conditions for the reconstruetioor. Simulation compar-
isons for both sparse and compressible signals are shown. In thiswegtso study the application of
CS based approaches for blood oxygenation level dependent (B@irirast functional MR imaging
(fMRYI). In particular, we show, via exhaustive experiments on actudlddanner data for brain fMRI,
that our recently proposed approach for recursive reconstruatisparse signal sequences, modified-

CS-residual, outperforms other existing CS based approaches.
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CHAPTER 1. Introduction

In traditional signal processing technology, it is required to sample thalswith Nyquist rate
which is twice of the signal’'s bandwidth to exactly recover the signal, see Fig. Fig. 1.1 shows
the diagram of the conventional transmission scheme. The signal is finplexhat Nyquist rate so
that we can obtain N samples. Then, they are compressed to only K sam@esAvk« N. After
that, the compressed data will be transmitted to the receiver and the reggivkscompress the data.
Finally, the original signal will be recovered. However, we will haversaquestion that why we are
bothering to use such a high sampling rate since we only use K sample dunsgission. There-
fore, our question is whether we can do sampling in a lower rate than Nyaitgsand combine the
sampling and compression into one simple step. If we can recover the sigimaighly undersampled
measurements, we can speed up the data acquisition significantly and grdatlg the data capturing
time. Especially, in medical image reconstruction such as CT or MRI, this widltlyréower the risk
of radiation and help to reduce the motion artifact which brings trouble forett@nstruction and clin-
ical diagnosis. In addition, undersampling can allow longer scanningaegtime or increase of the
radiation dose and this can increase signal-to-noise ratio (SNR) so thatctiestructed images bear
good quality.

Compressive Sensing (CS) provides an answer to this question. C&#heave proved that if the
signal is sparse or compressible in itself or some transform domain, wélareaecover the original
signal exactly or with small loss from highly undersampled linear projectibng,[3, 4, 5, 6, 7, 8, 9].
“Sparse” means the signal only has very few nonzero elements andfinwe the locations of nonzero
elements as the support of this signal. Similarly, “compressible” means onfyferelements are
significantly large while others are much smaller. We also defffieenergy support as the locations of

those large coefficients containig§s signal energy. As is known, many medical images are sparse or
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N>> K

Compress K Transmit

v

N K

\‘ Reconstructed signal (sparse/compressible)|

Figure 1.1 The limitation of conventional transmission scheme

compressible in wavelet domain, e.g., in the cardiac and larynx image seqoiefig. 1.2, the sizes
of their 99% energy support are only’% or 7% of the image sizes. Many other images can be sparse
in discrete cosine transform (DCT), discrete Fourier transform (Dfotal variation (TV) and other
domains. To recover the original signal, the simplest way to find the spardason is to exhaustively
search the entire signal space in a brute force way. However, we ikiaomputationally expensive.
CS provides practical solutions which can be solved in polynomial complexitthe sparse recon-
struction. Two famous groups of CS algorithms are greedy methods anedcataxation approaches.
The greedy methods include subspace pursuit[6], Orthogonal Matéhirgyit (OMP)[7], Stagewise
OMP][8], CoOSAMP]J9], etc. The convex relation approaches includeursuit(BP) and Basis Pursuit
Denoising (BPDN)[1], Dantzig selector[10], etc. There are many atharse reconstruction methods
such as FOCUSSJ[11], Sparse Bayesian Learning[12] and Bay@siapressive Sensing[13], etc.

In many real applications such as video compression or dynamic MRIs#&cgtion, the consec-
utive frames are usually correlated. Thus, when we are consideringrabéem of recursive recon-
struction for a time sequence of sparse signals, it is easy to use the matief@rmation within the
sequence. This gives the motivation of our work which is to causally anaswely reconstruct a time

sequence of signals with slowly changing sparsity pattern. Hence, thefgb& work is to solve the
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sparse recovery problem from a limited number of its linear projections byingjlithe prior infor-
mation. We try to reconstruct an-length sparse vectos, with support,V, from ann < m length
noiseless measurement vector,

y = Ax (1.0

or noisy measurement vector,

y:=Ax+w 1.2)

when the partial and partly erroneous knowledge of the signal’'s styaemoted byr’, is available.
Then we also study the case when an erroneous estimate of the signalmaliedenoted by(/i),

is also available. In (1.2)y is ann-length measurement noise vector ahs ann x m measurement
matrix. For simplicity, in this work, we just refer to as the signaland to A as the measurement
matrix. However, in generaly is the sparsity basis vector (which is either the signal itself or some
linear transform of the signal) andl = H® whereH is the measurement matrix addis the sparsity
basis matrix. If® is the identity matrix then: is the signal itself.

In practical applications]” and /i may be available from prior knowledge. Alternatively, in appli-
cations requiring recursive reconstruction of (approximately) spEiggaal or image sequences, with
slow time-varying sparsity patterns and slow changing signal values,amnese the support estimate
and the signal value estimate from the previous time instant as the “prior kihgsvleA key domain
where this problem occurs is in fast (recursive) dynamic MRI recaastm from highly undersampled
measurements. In MRI, we typically assume that the images are wavelet.sprshow slow support
and signal value change for two medical image sequences in Fig. 1.2.tkedigure, we can see that
the maximum support changes for both sequences are less than 2% opploet size and almost all
signal values’ changes are less tliai6% of the signal energy. Slow signal value change also implies
that a signal value is small before it gets removed from the support. Ottential applications in-
clude single-pixel camera based real-time video imaging [14]; video cosipresfeProCS (recursive
projected CS) based video denoising or video layering (separating videeground and background
layers) [15, 16]; and spectral domain optical coherence tomogrdptjyphsed dynamic imaging.

Recent work on compressive sensing (CS) gives conditions fot exaanstruction [3, 4, 18] and

bounds the error when this is not possible [2, 10]. In this work, weigeothe exact reconstruction
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(i) a larynx (vocal tract) image sequence (i) cardiac image sequence
@)
0.03 , 0.03 _ 0.08
G | O Cardiac, 99% O Cardiac, 99% ' (OCardiac 99%
: | # Larynx, 99% # Larynx, 99% #Larynx 99%
— : — 0.06r O
| 002 AL =| 0.02
S5 £5 .
I R e ° ) = 0.04
. » s,
=] oor, o© 0 Z] o0 o ooz—f* *‘ st “‘95*‘*
*04%0 o O o o, ’
»* o900, » et ‘“ ot OOOOOO %o op
5 10 15 20 5 .10 1520 * 10 is 20
Time - Time - Time -
(i) support additions (i) support removals (iii) signal value change

(b)

Figure 1.2 In (a), we show two medical image sequences (a cardiac angha la
sequence). In (b); is the two-level Daubechies-4 2D discrete wavelet
transform (DWT) of the cardiac or the larynx image at titrend the
setV; is its 99% energy support (the smallest set containing 99% of the
vector’s energy). lIts size)V;| varied between 4121-4183:(0.07m)
for larynx and between 1108-112% (0.06m) for cardiac.Notice that
all support changes are less than 2% of the support size and almost all
signal values changes are less than 4% @f;) v, || 2-
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conditions in noiseless case for our proposed modified compressismgémodified-CS) and regu-
larized modified basis pursuit (reg-mod-BP) and also bound the reaotistr errors for our proposed
modified basis pursuit denoising (mod-BPDN)and regularized modifieid passuit denoising (reg-

mod-BPDN).

1.1 Notations and Problem Definition

For any sefl” and vectow, by denotes a sub-vector containing the elementswaith indices inT".
||b||% refers to the/;, norm of the vectob. Also, ||b||o counts the number of nonzero elements.of

The notatiorll denotes the set complementfi.e., 7 = {i € [1,...,m|,i ¢ T}. 0 is the empty
set.

We us€’ for transpose. For the matri, A7 denotes the sub-matrix containing the columns of

A with indices inT. The matrix norm| A||,,, is defined ag{A||, = max, o Hﬁf”p

|
matrix on the set of rows and columns indexed by elemenfs.i07 5 is a zero matrix on the set of

e Ir is an identity
rows and columns indexed by elementgi@and.S respectively.

b = 0 (b = 0) means that each element of the vedtds greater than or equal to (strictly greater
than) zero. Similarly < 0 (b < 0) means each element is less than or equal to (strictly less than) zero.
We define the sign pattern, s@n as: [sgn(b)]; = b;/|b;| if b; # 0 and[sgn(b)]; = 0 if b; = 0.

The notationV L(b) denotes the gradient of the functidufb) with respect td.

When we sayb is supported orf’ U S we mean that the support éf(set of indices wheré is
nonzero, denoted as supp(b)) is a subsét of S.

The S-restricted isometry constant [18)y, for a matrix, A, is defined as the smallest real number

satisfying
(1= 8s)llell3 < | Arell3 < (1 + 8s)llell3 (1.3)

for all subsetsI” C [1,n] of cardinality|7'| < S and all real vectors of length|T’|. The restricted

orthogonality constant [180s, s,, is defined as the smallest real number satisfying

le1" Aqy" Ay ea| < 05, s, le1ll2] el (1.4)
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for all disjoint setsT, Tb C [1,n] with |T1| < S1, |T2| < Sy andS; + S2 < n, and for all vectorg;,

co of length|Ty|, |T»| respectively. By setting; = Ar,’ A, co in (1.4),
||AT1/AT2H < 951752 (1.5)

Our goal is to reconstruct a sparse vectarwith support,NV, from the measurement vectar,
satisfying (1.1) or (1.2). We assume patrtial knowledge of the supparttee byT’, and of the signal

estimate orf’, denoted by /). The support estimate may contain errors — migsesd extras\..

1.2 Related Work

The sparse reconstruction problem, without using any support or sigh@ knowledge, has been
studied for a long time [18, 3, 4, 1, 2, 19, 10, 5]. It tries to find the sgaggnal among all signals that
satisfy the data constraint, i.e. it solvesn,, ||b]|o S.t. y = Ab. This brute-force search has exponential
complexity. One class of practical approaches to solve tiiasss pursuit (BPWhich replacegb||o by
|Ib||1 [1]. The¢; norm is the closest norm #y that makes the problem convex. Therefore, for noiseless
measurements, BP solves

mbin b1 st y=Ab (1.6)

Exact reconstruction conditions are obtained in [18, 3, 4, 19]. Foym&asurements, the data con-
straint becomes an inequality constraint. However, this assumes that tleeisibisunded and the
noise bound is available. In practical applications where this may not blalziea one can use the

Lagrangian version which solves
. 1
min5|[b]l1 + 5 [ly — Ab3 (1.7)

This is calledbasis pursuit denoising (BPDN) [1]Since this solves an unconstrained optimization
problem, itis also faster. An error bound of BPDN was obtained in [2jolHyounds for its constrained
version were obtained in [19, 20].

Very recent work on causal sparse reconstruction for time segsi@mdades [21] (focusses on the
time-invariant support case) and [22, 23] (use past estimates to ordy spethe current optimization

but not to improve reconstruction error). The problem of sparsenstnaction with partial support
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knowledge was introduced in our work [24, 25]; and also in parallel iajghnejad et al [26] and in
vonBorries et al [27]. In [24, 25], we proposed an approach datledified-CSwhich tries to find
the signal that is sparsest outside theZSe@ind satisfies the data constraint. We presented our solution
using convex relations approaches. We obtained exact reconstrgotiiitions for it by using the
restricted isometry approach [18]. When measurements are noisy, feaitine reasons as above, one
can use the Lagrangian versiorodified-BPDN (mod-BPDNIts error was bounded in our work [28],
while the error of its constrained version was bounded in Jacques A28, some later work based
on our suggested methods include [30] ( which used the same idea of magiSibdt implemented
using greedy algorithm OMP) and [31] (which iteratively used the sumstimate from modified-CS
reconstruction at each iteration).

In [26], Khajehnejad et al assumed a probabilistic support prior aoplgsed a weighted, solu-
tion. They also obtained exact reconstruction thresholds for weidghtied using the overall approach
of Donoho [32]. It solves:

min [[bre|ls +7llorly sty = Ab (1.8)
for noiseless measurements or
. ! 1 2
min brel|s +/llbrll + 5 ly — Abll (L.9)
for noisy measurements.
Another related work is calle@S-residual or CS-difivhich computes
#=p+b  wherebsolves
mbin IIbli st y=Ab (noiseless) (1.10)
. 1 . :
min y[[blls + S lly — A — Ab[3 (noisy) (1.11)
This has the following limitation. It does not use the fact that wiiels an accurate estimate of the
true support(z)7- is much more sparse compared with the full- 1) (the support size af - is |A|
while that of (z — 1) is |T'| 4+ |A| which is much larger). The exception is if the signal value prior is so
strong thatz — /1) is zero (or very small) on all or a part @f.

CS-residual is also related to LS-CS and KF-CS [33, 34]. LS-CS s¢lv&6) or (1.11) but with

upbeingsthe .S estimate,ecomputed assuming that the signal is support&duwd with (4)r- = 0.
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For a static problem, KF-CS can be interpreted as computing the regulai&zedtimate orf” and
using that agiy. LS-CS and KF-CS also have a limitation similar to CS-residual.

There are some other CS-based methods used in the application of MR$tre@tion. The appli-
cation of CS to MRI was first developed in detail in [35]. The most straigivdod application of CS to
fMRI images reconstruction would be to perform CS on each slice of daggpérdiently (simple-CS).
For time sequences, batch-CS [36] improves simple-CS by jointly recotisgjube entire sequence
by treating it as a 3D sparse signal. Because it uses sparsity also aldimgelaeis, it is able to achieve
accurate reconstructions using much fewer measurements than simple{GBe Beconstruction can
only be performed on the entiteatch of data after all sampling is completed. Also, for aframe
acquisition, its computational complexity is rouglifytimes that of simple-CS, while its memory re-
quirement isl times that of simple-CS. In recent work, [37, 38] proposed Kt-FOCU&8¢h uses
the fact that a sequence of MR image data is sparse i thef domain wheref denotes temporal
frequency. The key idea is to reconstriéf — ¢ “frames” using FOCUSS[39] wherY” denotes the
phase encoding direction (y-axis of the 2D discrete Fourier transfbieT) plane). Kt-FOCUSS is
still a batch method, which means it is still (&) non-causal, i.e. it needs to waiigra the entire
[ frame sequence before doing the reconstruction (or one needsua iein a batch fashion again
at each time which is slow), and (b) its memory requirement isidtithes that of simple-CS. But its
reconstruction is fast because it is done on khe— ¢ “frame” at a time and because often it only runs
a a few iterations of FOCUSS starting from previous “frame” as initial gu&€ee same memory and

non-causality issues also remain with Kt-FOCUSS with motion compensation (B7T) [

1.3 Dissertation Organization

The dissertation is organized as follows. Exact recovery of Modifi8da@d Reg-mod-BP for
noiseless measurements and their sufficient conditions for exact teadim are introduced in Chap-
ter 2. The error bounds for Mod-BPDN and Reg-mod-BPDN for noisgsueements are discussed in
Chapter 3. The application of our algorithms in functional MRI to detect @ecégions is demonstrated

in Chapter 4. Finally, conclusions are summarized in Chapter 5.
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CHAPTER 2. Sparse Reconstruction for Noiseless Measurementdtv Partial Support

and Signal Knowledge

In this chapter, we discuss the problem of reconstructing from noiseleasurements when partial
support are signal knowledge are known.[24, 40, 25, 41] We fitebdoce modified-CS when only
partial support is known. Then we discuss regularized modified-Bmwhe signal estimate is also

available.

2.1 Modified-CS for problems with partially known support
We measure am-length vectory where
y = Ax (2.1)

We need to estimate which is a sparse-length vector withn > m. The support ofc, denotedV,
can be splitasv =T U A\ A, whereT is the “known” part of the support). := 7'\ N is the error
in the the known part and := N \ T is the unknown part. Thus). C T, A, T are disjoint and
IN| = |+ |A] - |A].

We uses := | N| to denote the size of the (s)uppdrt,= | 7’| to denote the size of the (k)nown part
of the supporte = |A.| to denote the size of the (e)rror in the known part ang |A| to denote the
size of the (u)nknown part of the support.

We assume thatl satisfies the5-restricted isometry property (RIP) [18] f&f = (s + e 4+ u) =
(k 4 2u). S-RIP means thais < 1 wheredg is the RIP constant fad defined in (1.3).

In a static problem? is available from prior knowledge. For example, in the MRI problem de-
scribed in the introduction, leV be the (unknown) set of all DWT coefficients with magnitude above

a certain zeroing threshold. Assume that the smaller coefficients are sgbtdPzior knowledge tells
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us that most image intensities are nonzero and so the approximation coeffenienmostly nonzero.
Thus we can lef” be the (known) set of indices of all the approximation coefficients. Thkrown)
set of indices of the approximation coefficients which are zero fAgmThe (unknown) set of indices
of the nonzero detail coefficients ford.

For the time series problem,= y; andz = z; with support,N; = T U A\ A, andT = Ny is
the support estimate from the previous time instant. If exact reconstruagamat — 1, 7' = N;_1.
In this caseA. = N;—; \ IV is the set of indices of elements that were nonzero-atl, but are now
zero (deletions) whilA = N, \ N;_; is the newly added coefficients aftadditions). Slow sparsity
pattern change over time, e.g. see Fig. 1.2, then impliesithatA| ande = |A.| are much smaller
thans = | N|.

When exact reconstruction does not ocedvg, includes both the current deletions and the extras
fromt — 1, N, \ N;—1. Similarly, A includes both the current additions and the misses frem,
N1\ N;_1. In this case, slow support change, along with ; ~ N;_, still implies thatu < s and

e K s.

2.1.1 Modified-CS

Our goal is to find a signal that satisfies the data constraint given in (iddyhose support contains
the smallest number of new additionsZo although it may or may not contain all elementsiofin

other words, we would like to solve
mbin (D) 7e]lo s.t. y=Ab (2.2)

If A.isempty,i.e.ifN =T UA, then the solution of (2.2) is also the sparsest solution whose support
contains?'.

As is well known, minimizing the/y norm is a combinatorial optimization problem [42]. We
propose to use the same trick that resulted in CS [1, 3, 4, 2]. We replaég tloem by the/; norm,

which is the closest norm i that makes the optimization problem convex, i.e. we solve

mbin (D)1 s.t. y=Ab (2.3)
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Denote its output by:. If needed, the support is estimated as
N:={iel,n]:(2)?>a} (2.4)

wherea > 0 is a zeroing threshold. If exact reconstruction occursan be zero. We discuss threshold
setting for cases where exact reconstruction does not occur in CR2apt2 3.
2.1.2 Exact Reconstruction Result

We first analyze thé, version of modified-CS in Chapter 2.1.2.1. We then give the exact recon-
struction result for the actud| problem in Chapter 2.1.2.2.

2.1.2.1 Exact Reconstruction Result?, version of modified-CS

Consider they problem, (2.2). Using a rank argument similar to [18, Lemma 1.2] we can sheow th

following. The proof is given in the Appendix.

Proposition 1 Given a sparse vectar, with support,N =T U A\ A., whereA andT are disjoint
andA. C T. Consider reconstructing it from := Ax by solving (2.2).z is the unique minimizer of

(2.2) if 0104 < 1 (A satisfies thék + 2u)-RIP).

Usingk = s + e — u, this is equivalent t@s ., < 1. Compare this with [18, Lemma 1.2] for the
fy version of CS. It required,; < 1 which is much stronger whein < s ande < s, as is true for time

series problems.

2.1.2.2 Exact Reconstruction Result: modified-CS

Of course we do not solve (2.2) but itsrelaxation, (2.3). Just like in CS, the sufficient conditions
for this to give exact reconstruction will be slightly stronger. In the newt $ubsections, we prove the

following result.

Theorem 1 (Exact Reconstruction) Given a sparse vectar, whose supporty = TUA\ A, where

A andT are disjoint andA. C T. Consider reconstructing it from := Az by solving (2.3)z is the
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1. Oyu < 1andda, + & + 607 ,, < 1 and

2. ap(2u,u) + ag(u,u) < 1 where

Oz sk
Os5 + =15,
0% &
T—o,

(1>

a (S, 5) (2.5)

1—6g—

The above conditions can be rewritten using: s + ¢ — u.

We will not give the proof of Theorem 1 since it is a special case formeg-BP and this theorem
can be obtained by proving the exact reconstruction of reg-mod-BBEndlerstand the second con-

dition better and relate it to the corresponding CS result, let us simplify;it2u, v) + ax(u,u) <

02 | 402
2u,k k
0u,2u +0u,u+ 7ui_5ku’

. Simplifying further, a sufficient condition fot(2u,u) + ag(u,u) < 1is

202, +62 - . .
Ou2u + Oupu + %ﬁc“’“ + &9, < 1. Further, a sufficient condition for this &, ., + d2,, + 024 +

To get a condition only in terms dfs’s, use the fact thefls s < 5.5 [18]. A sufficient condition

is 209, + 03y + O + 67, + 2675, < 1. Further, notice that if. < k and if 6342, < 1/5, then

2025 + 03u + Ok + Oy + 2070 < 40k42u + Okt 2u(30k120) < (44 3/5)0k 420 < 23/25 < 1.

Corollary 1 (Exact Reconstruction) Given a sparse vector;, whose supportN = T U A\ A,

whereA andT are disjoint andA,. C T'. Consider reconstructing it from := Ax by solving (2.3).
e z is the unique minimizer of (2.3) .., < 1 and
(O2u + Ou + Ou2u) + (6 + 04, + 207 5,) < 1 (2.6)

e This, in turn, holds if

269y + O30 + Ok + Oppy + 20710, < 1.

e This, in turn, holds i < k& and

5k-+2u < 1/5
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These conditions can be rewritten by substituting s + ¢ — u.

Compare (2.6) to the sufficient condition for CS given in [18]:
025 + 055 +0s2s <1 (2.7)

As shown in Fig. 1.2, usually < s, e < s andu ~ e (which means that ~ s). Under this
assumption, compare (2.6) with (2.7). The first bracket of (2.6) will bdlssompared to the left hand
side (LHS) of (2.7), particularly whes/m is larger. Also, ifd;, 2, < 1/2 (requiress/m to not be too
large), then each term of the second bracket will also be smaller than t8eof.k2.6). The last two
terms of the second bracket @eterms, which makes them even smaller. Thus, for a certain range of
values ofs/m, the LHS of (2.6) will be small compared to that of (2.7). Siicé are non-increasing

in m, this means that, if, e are small enough, (2.6) can hold for much smaller values tifian (2.7),

i.e. exact reconstruction with modified-CS can be guaranteed for smalleevaltm than what is

needed for CSA detailed comparison is done in Chapter 2.3.1.1.

2.1.2.3 Dynamic Modified-CS: Modified-CS for Recursive Reconstrumn of Signal Sequences

The most important application of modified-CS is for recursive reconstructidcime sequences
of sparse or compressible signals. To apply it to time sequences, at eadh timeolve (2.3) with
T = N,_, whereN,_, is the support estimate from- 1 and is computed using (2.4). At= 0 we can
either initialize with CS, i.e. séf’ to be the empty set, or with modified-CS withbeing the support
available from prior knowledge, e.g. for wavelet sparse ima@espuld be the set of indices of the
approximation coefficients. The prior knowledge is usually not very tewand thus at = 0 one
will usually need more measurements i.e. one will need toyyse Agxo where Ay is anmg x n
measurement matrix withhg > m. The full algorithm is summarized in Algorithm 1.

Setting the support estimation threshald, If m is large enough for exact reconstructiencan
be zero. In case of very accurate reconstruction, if wexdetbe slightly smaller than the magnitude
of the smallest element of the support (if that is roughly known), it will ees@ro misses and fewest
false additions. Asn is reduced further (error increasea)should be increased further to prevent too

many false additions.
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For compressible signals, one should do the above but with supporteegty thes%-support,
i.e. a should be equal to/slightly smaller than the magnitude of the smallest elementi§ttkapport.

B%-support is defined as below.

Definition 1 (5%-energy support or 5%-support) For sparse signals, clearly the support ¢ :=
{i € [1,n] : 22 > 0}. For compressible signals, we misuse notation slightly andVigte the3%-

supporti.e. N := {i € [1,n] : 22 > (}, where( is the largest real number for whicN contains at

least3% of the signal energy, e.@. = 99 in Fig. 1.2.

Chooses so that, with the givem:, the elements of th8%-support are accurately reconstructed.
Alternatively, one can use the approach proposed in [43, Sectidriri}, only detect additions to

the support using a small threshold (or keep adding largest elemenis asttong asd remains well-

conditioned), then compute an LS estimate on that support and then use tasiin@te to perform

support deletion using a larger threshalgselected as above. If there are few misses in the support ad-

dition step, the LS estimate will have lower error than the output of modifieditiS making deletion

accurate even with a larger threshold.

Algorithm 1 Dynamic Modified-CS

At t = 0, computei, as the solution ofnin, ||(b)7<|1, S.t.yo = Agb, whereT is either empty or is
available from prior knowledge. Compu& = {i € [1,n] : (&0)? > a}.

Fort > 0, do

1. Modified-CS.LetT = N,_;. Computet; as the solution ofning [|(b)7<]||1, S.t.y; = Ab.
2. Estimate the SupportN; = {i € [1,n] : (&)? > a}.
3. Output the reconstructiciy.

Feedbacth, increment, and go to step 1.

2.2 Regularized Modified-BP for Noiseless Sparse Reconstruah with Partial

Erroneous Support and Signal Value Knowledge

In previous section, we discussed modified-CS which only uses the pakialyn support for
reconstruction. In this section, we study the case when both the partbdrsignd also the signal

estimate,onjitaresavailables Our goal is to solve the sparse reconstruaitdemir i.e. reconstruct an
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m-length sparse vectar, with support,N, from ann < m length measurement vector,
y = Ax, (2.8)

when an erroneous estimate of the signal’s support, denotdd byd an erroneous estimate of the
signal values orf’, denoted by(/i)r, are available. The support estimafe, can be rewritten as
T 2 NUA. \ A whereA contains the misses whil&. contains the extras in the support estimate.

The signal value estimate is assumed to be zero al6nge.,

X ()7
= (2.9)
Ore
and it satisfies
(W) = (z)r+v, with [[v][e < p. (2.10)
Recall the following functions of the RIC and ROC 4fin previous section:
05 0
05 B _|_ s,k_ s,k
ap(s,8) = ’—1952’@ (2.11)
135 — 125
V149
Kp(u) & Y210 (2.12)
1 — 0y — 725
u T 1=g,

For the matrix4, and for any sef for which Ag’ Ag is full rank, we define the matri&/(S) as

M(S)2 T — Ag(As'Ag) L Ag' (2.13)

2.2.1 Regularized Modified Basis Pursuit

Mod-CS given in (2.3) puts no cost @ and no explicit constraint except= Ab. Thus, when
very few measurements are availalile,can become larger than required in order to satisfy Ab
with the smallest|br-||;. A similar, though less, bias will also occur with (1.8) wherc 1. However,
if a signal value estimate df, ()7, is also available, one can use that to consthginOne way to do
this, is to add\||br — ji7||3 to the mod-CS cost. However, as we saw from simulations, while this does

achieve lower reconstruction error, it cannot achieve exact regaith fewer measurements (smaller
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n) than mod-CS [25]. The reason is it puts a cost on the effidistance fromi, and so encourages
elements on the extras sét,, to be closer td/i1) A, which is nonzero.
On the other hand, if we instead use the distance fronyi, and add it as a constraint, then, at

least in certain situations, we can achieve exact recovery with a smdahan mod-CS. Thus, we study
min [brell, sty = Aband|br — jirfe < p (2.14)

and call itreg-mod-BP We see from simulations, thathenever one or more of the inequality con-
straints are active, i.elb; — ji;| = p for somei € T, (2.14) does achieve exact recovery with fewer

measurements than mod-G8e use this observation to derive a better exact recovery result below

2.2.2 Exact Reconstruction Conditions

In this section, we obtain exact reconstruction conditions for reg-mo&yBé&xploiting the above
fact. We give the result and discuss its implications below in Chapter 2.2.2elkéjhlemmas leading

to its proof are given in Chapter 2.2.2.2 and the proof outline in Chapter 2.2.2.3

2.2.2.1 Exact Reconstruction Result

Let us begin by defining the two types of active sets (set of indices fachathe inequality con-

straint is active),+ andT},., and the inactive sef},, as follows.

Tar = {i€T:2— i =p}
To. = {i€T:z;i—f1;=—p}

Tn = {ieT: |z —jul <p} (2.15)

In the result below, we try to find the sélig.g C Ta+ andTa.g C Ta. S0 that Tasgl + |Ta-g| is maximized
while Ta+g and Ty g satisfy certain constraints. We call these the “good” sets. We define & “b
subset ofl', asT;, := T'\ (Ta+gU Tag). As we will see, the smaller the size of this bad set, the weaker

are our exact recovery conditions.

10One can also try to constrain tie distance instead of thé,., distance. When thé, constraint is active, one should
again need a smaller for exact recovery. When we check this via simulations, this does happésince it is at most one
active constraint, the reduction inrequired is small compared to what is achieved by (2.14) and hende wet study this
further.
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Theorem 2 (Exact Recovery Conditions)Consider recovering a sparse vectat, with support/V,
fromy := Ax by solving (2.14). The support estimafe, and the misses and extras in ik, A.,
satisfyT = N U A, \ A. The signal estimatgj, satisfies (2.10), i.e}|z7 — ||« < p. Recall the

sizes of the setE and A are defined as
k:=|T|, u:=|A]|. (2.16)
The truex is the unique minimizer of (2.14) if
1. Gppu <1, oy + 63 + 0,%’% <1,and
2. ar(2u,u) + ag, (u,u) < 1 whereky, := |1},

Tb é T \ (Ta+g U Ta-g), and

{Targ, Tag) = arg max (|Targ| + |Tag|) SuUbject to

Ta+gyTa-g
Ta+g C Tas, Ta—g C Ta,

A/w >0 Vi € Targ, and A/w < 0 Vi € Tayg (2.17)
where
w2 M(’f’b)AA(AA’M(Tb)AA)‘Isgr(xA),

Tb é T\ (Ta+g U Ta.g),

M(S) is specified in (2.13)qx (s, $) is defined in (2.11), and the sefy., T5. are defined in
(2.15).1

Notice thatay(s, §) is a non-decreasing function bf Sincek;, = k — |Ta+g| — |Ta-g|, thus, finding
the largest possible sef&.q and Ta.g ensures that the condition, (2u, u) + ax, (u,u) < 1 is the
weakest. The reason for definifig.q andT;.g in the above fashion will become clear in the proof of
Lemma 2.

Notice also that the first condition of the above result ensuresithat 1. Since|T;| < k, thus,
Az ' Az, is positive definite and thus invertible. Thivs(73) is always well defined. The first condition
also ensures thai, (2u, v) > 0. Sincek;, < k, and sincej; andd,, 5, are non-decreasing functions of

i, (u, u) > 0.
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Remark 1 (Computation complexity) Finding the best.+q andT5 g requires that one check all pos-
sible subsets dfy+ and T, and find the pair with the largest sum of sizes that satisfies (2.17). To do
this, one would start WitHarg = Ta+, Ta-g = Ta-; computeT, andw and check if (2.17) holds; if it
does not, remove one element frdg and then check (2.17); then remove an element flagiand
check (2.17); keep doing this until one finds a pair for which (2.17) hdld¢he worst case, one will
need to check (2.12)7=I+/7=! times. However, the complexity of computing the RyCor any of the
ROC's is anyway exponential ii’| and |T"| > |Ta+| + |Ta-|. In summary, computing the conditions
of Theorem 2 has complexity that is exponential in the support size,dsathe is true for all sparse
recovery results that use the RIC. We should mention though that, folirceatedom matrices, e.g.
random Gaussian, there are results that upper bound the RIC valueshigithprobability, e.g. see

[18]. However, the resulting bounds are usually quite loose.

Remark 2 (Applicability) A practical case where some of the inequality constraints will be active
with nonzero probability is when dealing with quantized signals and quantigedlsstimates. If the
range of values that the signal estimate can take given the signal (oreisa)is known, the smallest
choice ofp is easily computed. We show some examples in Chapter 2.3. In generalif @wst the
range of values both can take is known, we can compulehe fewer the number values that— /i;
can take, the larger will be the expected size of the activelget= Ta+ U T5.. Also, the condition
(2.17) will hold for non-empt{ly, := Ta+g U Tag With positive probability, e.g. in our simulations (see
Tables 2.3, 2.4), the average size of the good setas about half the average size of the activelget
Some real applications where quantized signals and signal estimates aecrecursive CS based
video compression [44, 45] (the original video itself is quantized) or tursive projected CS (Re-
ProCS) [15, 16] based moving or deforming foreground objects’ etima (e.g. a person moving
towards a camera) from very large but correlated noise (e.g. very sihaitking but slowly changing
backgrounds), particularly when the videos are coarsely quantizedliflbrate). A common example
where low bit rate videos occur is mobile telephony applications. In anyesfetlapplications, if we
know a bound on the maximum change of the sparse signal’s value fretinos instant to the next,

that can serve ag.

Remark:3,(Comparison,with BP, mod-CS, other results) The worst case for Theorem 2 is when both
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the setsla+g and T,.g are empty either because no constraint is actifg. (and 7. are both empty)
or because (2.17) does not hold for any pair of subsetgpfand 7.. In this case, we havie, = k
and so the required sufficient conditions are the same as those of ®d¢d@Heorem 1). A small extra
requirement is that satisfies (2.10). Thus, in the worst case, Theorem 2 holds underriie candi-
tions onA (needs the same number of measurements) as mod-CS. In predgtian,sve have already
argued that the mod-CS result holds under weaker conditions than shésdor BP [18, 19] as long
as the size of the support errofg |, |A.|, are small, and hence the same can be said about Theorem 2.
Small|A|, |A.| is a valid assumption in recursive recovery applications like recursivaayo MRI,
recursive CS based video compression, or ReProCS based fanelgeatraction from large but corre-
lated background noise.

Moreover, if some inequality constraints are active and (2.17) holds, aase of quantized signals

and signal estimates, Theorem 2 holds under weaker conditiorstban the mod-CS result.

Remark 4 (Small reconstruction error) The reconstruction error of reg-mod-BP is significantly smaller
than that of mod-CS, weighteéd or BP, even when none of the constraints is actiae long asp is

small (see Table 2.5). On the other hand, the exact recovery conditnstdepend on the value of

p, but only on the size of the good subsets of the active sets. This is alseeabseour simulations.

In Table 2.5, we show results fgr = 0.1. Even when we triegg = 0.5, the exact reconstruction
probability or the smallest needed for exact reconstruction remained the same, but the recotistru

error increased.

2.2.2.2 Proof of Theorem 2: Key Lemmas

Our overall proof strategy is similar to that of [18] for BP. We first findeaaf sufficient conditions
on ann x 1 vector,w, that help ensure thatis the unique minimizer of (2.14). This is done in Lemma
1. Next, we find sufficient conditions that the measurement matiskhould satisfy so that one sugh
can be found. This is done in an iterative fashion in the theorem'’s prdad.pfoof uses Lemma 2 at
the zeroth iteration, followed by applications of Lemma 3 at later iterations.

To obtain the sufficient conditions an, as suggested in [18], we first write out the Karush-Kuhn-

Tucker (KKT) conditions forr to bea minimizer of (2.14) [46, Chapter 5]. By strengthening these a
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little, we get a set ofufficientconditions forz to bethe uniqueminimizer. The necessary conditions
for 2 to be a minimizer are: there exists arx 1, vectorw (Lagrange multiplier for the constraints in

y = Ax), a|Tas+| x 1 vector,\1, and a|T5.| x 1 vector,\z, such that (s.t.)
1. every element ok; and s is non-negative, i.e\; = 0 and\y > 0,
2. Ar,'w =0, Ap,/w = Ay, Ap,'w = =g, An'w = sgn(za), and||Apuaye'wlle < 1.

As we will see in the proof of Lemma 1, strengthenifg ria)'wloe < 110 [[Arrua)e'w]loo <
1, keeping the other conditions the same, and requiring §hat < 1 gives us a set o$ufficient

conditions.

Lemma 1l Letx be as defined in Theorem 2.is the unique minimizer of (2.14)df.., < 1 and if we

can find am x 1 vector,w, S.t.
1. Ap/w =0, Apn,'w = 0, Ap,'w <0,
2. AA'w = sgn(za),
3. |Aj/w| < 1forall j ¢ TUA
Recall thatT;+, Ta- andTi, are defined in (2.15) anl, u in Theorem 21

Proof: The proof is given in Appendix A.2.
Next, we try to obtain sufficient conditions on the measurement matr{gn its RIC’'s and ROC's)
to ensure that sucha can be found. This is done by using Lemmas 2 and 3 given below. Lemma 2
helps ensure that the first two conditions of Lemma 1 hold and provides tiegtaoint for ensuring
that the third condition also holds. Then, Lemma 3 applied iteratively helpgestisat the third

condition also holds.

Lemma 2 Assume thak + u < m. Lets be such thak + u + 5§ < m. If 6, + &, + 67, < 1, then

there exists am x 1 vectorw and an “exceptional” setF, disjoint withT U A, s.t.

1. Ap/w =0, Aq,.,'w = 0, A, /w < 0,

Ol Ll Zyl_i.lbl
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3. |E| < 5, | Ap'l2 < ax, (u, )V, |A0] < 2020 /i Vi ¢ TUAUE,
4. @2 < K, (w)v/u.

Recall thatay(s, 5), K (s) are defined in (2.11), (2.12) arith+g, Ta-g, T3, kp, k andw in Theorem 2.
|

Notice that because we have assumeddhat ¢, + Gibﬁu <1, ax, (u, 5) and Ky, (u) are positive.
We call the sett an “exceptional” set, because except on thef$et (7' U A)¢, everywhere else on
(T U A)¢, |Aj'w| is bounded. This notion is taken from [18]. Notice that the first two conditioin
the above lemma are one way to satisfy the first two conditions of Lemma 1BjneeTi, U (Ta+ \
Targ) U (Ta.\ Tag).

Proof: The proof is given in Appendix A.3. We let = M (T,) Ax(AxA" M (Ty) Ax) " tsgn(za).
Since the good setk.q, T5.g are appropriately defined (see (2.17)), the first two conditions hold. Th
rest of the proof boundgu||2, and finds the sef C (TUA)¢ of size|E| < § sothaA;’w| is bounded

foralli ¢ T U AU E and alsg|Ag"w||2 is bounded.

Lemma 3 Assume that < m. Lets, 5 be such that + s + 5§ < m. Assume thad, + 0, + 0,%13 < 1.
Let Ty be a set that is disjoint witi’, of size|T,| < s and letc be a|T| x 1 vector. Then there exists
ann x 1 vector,w, and a setf, disjoint withT' U T, s.t. (i) A7'w = 0, (i) Ap,’w = ¢, (iii) |E| < 3,
[AE" @2 < ar(s, )l|ell2, |A;"@] < M\/‘%"é)\chz, Vi ¢ TUT,UE, and (V) |[@2 < Ki(s)|cll2-

Recall thata (s, 5), Ki(s) are defined in (2.11), (2.12), arid u in Theorem 21

Proof: The proof of this lemma is given in Appendix A.4.

Notice that because we have assumeddhat 5, + 0,378 <1, ai(s, 3) andKy(s) are positive.

2.2.2.3 Proof Outline of Theorem 2

We give only the outline here and the complete proof is given in the Appendix At iteration
zero, we apply Lemma 2 with = u, to get aw; and an exceptional sé}; ;, disjoint withT' U A, of
size less tham. Lemma 2 can be applied because< k and condition 1 of the theorem holds. At

iterationr > 0, we apply Lemma 3 witll; = AU T}, (so thats = 2u), ca =0, ¢, = Ar,'w, and
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5 = uto get aw,41 and an exceptional s&f; . disjoint withTUAUT, , of size less than. Lemma
3 can be applied because condition 1 of the theorem holds. Defiied °>° (—1)""lw,. We then
argue that if condition 2 of the theorem holdsjs well-defined and satisfies the conditions of Lemma

1. Applying Lemma 1, the result follows.

2.2.3 Reconstruction Error Bound

When exact reconstruction cannot be achieved, we want to boundrtreoé” = & — z. We
adapt the approach of [19, 29] to bound thenorm of the errot|A||2. First consider modCS, i.e. (2.3).
When exact reconstruction condition does not hold, the following lemmadaswne way to bound

the error.
Lemma 4 Pick aA € A and aT C T such thatd 7, 5z < V2 — 1. Denotei as the unique
minimizer of (2.3), then

L= 071494 2ozl

1—(vV2+ 1) 4914 \/E

[z =22 < (2.18)

As long as the true is always part of the feasible set of (2.14), i.e. as longaas— ur|l- < p, the
above lemma also holds for reg-mod-BP. In the next lemma we also use this@nigraint to obtain
another error bound for reg-mod-BP, which is tighter than that of Lemmaehy is small enough,

i.e. prior information is strong.

Lemma 5 Letz solve (2.14) andz7 — u7|leo < p. If 02, < V2 — 1 @anddy o, < 1 hold, then

2\/E5k:+2u

— 7y <
o=l < (= i

+2)p (2.19)

Combining the above two lemmas, we have the following Theorem to bound thrd@rreg-mod-BP.

Theorem 3 (Reconstruction Error Bound) Let & solve (2.14). filxr — prlleo < p and if da,, <
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V2 — 1 anddj4a, < 1, then

|z — Z||2 < min{By, Ba2}, where

B1 = ( 2V kb +2)p
1- (\/i + 1)52u
L =049 2|z 7 xvelln
By = min T1+2A| _ 12 Fua)e |

TCT,ACA 1- (\/§+ 1)6|T|'|'2|A‘ \/@

817 12)A] < V2 -1

The complete proof is in the Appendix A.5.1. Clearly the bound for modC8;isince modCS

is a special case of reg-mod-BP when= oo and B; = oo in this case. Therefore, reg-mod-BP
bound, which ismin{B;, Bz}, will never be larger than modCS bound. One particular case is when
Sp4ou < V2—1andin this casd, = 0 which implies that exact reconstruction occurs for both modCS
and reg-mod-BP. However, when the number of measurements is very &mallwill be much larger
thany/2 — 1. Thus,|T| and|A| in modCS bound3, must be small such thatz oA < V2 — 1.
However, the se(T U A)C becomes larger resulting #q% to be very large. Hence, modCS
bound will be very large. But for reg-mod-BP, if the signal estimateis good which allows a small

p, thenBy < Bs resulting a much smaller bound than modCS.

2.2.4 Variation of Regularized Modified-BP

So far we have studied the exact recovery conditions for reg-moé®W®e stated in the beginning
of this chapter, we study the exact reconstruction conditions of (2.lc8use it can have better con-
ditions when some constraints are active. In practice, when exactstegction cannot be achieved,
a variant version of reg-mod-BP is to move the signal estimate constraint tmghéunction which

reduces the reconstruction error by solving
min {|()ze[ls +y[[(b)r — prlF st y=Ab (2.20)

We call the above regularized modified-CS or reg-mod-CS. Denote itstdaytpil.,. The parametey
is easier to adjust in practical applications. However, as we claimed at ¢irnb®y, reg-mod-CS can
not get better exact recovery conditions than modified-CS. We will stuitiyatigh some simulations

below.
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2.2.4.1 Settingy using an MAP interpretation of reg-mod-CS

One way to select is to interpret the solution of (2.20) as a maximum a posteriori (MAP) estimate
under the following prior model and under the observation model of (Gi/en the prior support and

signal estimates’ andy, assume that; andz. are mutually independent and

p(xr|T,pr) = N(wp;pr, o)),

1\ T _legels
p(xre|T, pr) = (K) e v, (2.21)
P

i.e. all elements of are mutually independent; each elemenf6fis zero mean Laplace distributed
with parameter\,; and theit element of7" is Gaussian with meap; and variancerf,. Under the
above model, ify = )\p/2a§ in (2.20), then, clearly, its solutiot,..,, will be an MAP solution.

Given i.i.d. training data, the maximum likelihood estimate (MLEM\Qf af, can be easily com-

puted in closed form [47].

2.2.4.2 Dynamic Regularized Modified-CS (reg-mod-CS)

To apply reg-mod-CS to time sequences, we solve (2.20)ith N;_; andup = (Z¢—1)7. Thus,

we use Algorithm 1 with step 1 replaced by
min 10) e b +AMB)g, , — (1), I3 sty =Ab (2.22)

In the last step, we feed badk and ;.

In Appendix A.6, we give the conditions under which the solution of (2.22pmes a causal MAP
estimate. To summarize that discussion, if we-set \,/202 where),, o3 are the parameters of
the signal model given there, and if we assume that the previous signeifectly estimated from
Y0, - - - Y+—1 With the estimate being zero outsidé_, and equal t((a}t_l)Nt_l on it, then the solution
of (2.22) will be the causal MAP solution under that model.

In practice, the model parameters are usually not known. But, if we hraéning time sequence

of signals, we can compute their MLEs using (A.44), also given in AppeAdix
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2.3 Numerical Experiments

In this section, we did the simulations to verify all results we obtained in the alavsections.
First, we show a set of experiments for modified-CS. Then, we give thex gttt of experiments for

reg-mod-BP.

2.3.1 Experimental results of modified-CS

We first compared the sufficient conditions of modified-CS and CS using lilggh probability
bounds and also through a detailed simulation. Then, we simulated two appkca@i&based im-
age/video compression (or single-pixel camera imaging) and static/dynamicTM® measurement
matrix wasA = H® where® is the sparsity basis of the image aHdnodels the measurement acqui-
sition. All operations are explained by rewriting the image as a 1D vector.s&@d = W' wherelV
is an orthonormal matrix corresponding to a 2D-DWT for a 2-level Dahiese4 wavelet. For video
compression (or single-pixel imagingy, is a random Gaussian matrix, denotéd, (i.i.d. zero mean
Gaussiann x n matrix with columns normalized to unft norm). For MRI, H is a partial Fourier
matrix, i.e. H = M F whereM is anm x n mask which contains a single 1 at a different randomly
selected location in each row and all other entries are zerd'aadhe matrix corresponding to the 2D
discrete Fourier transform (DFT).

N-RMSE, defined here dls:; —||2 /|| 2|2, is used to compare the reconstruction performance. We
first used the sparsified and then the true image and then did the same fosegagaces. In all cases,
the image was sparsified by computing its 2D-DWT, retaining the coefficiemns fine 99%-energy
support while setting others to zero and taking the inverse DWT. We useztithvel Daubechies-4
2D-DWT as the sparsifying basis. We compare modified-CS with simple C3e§i@®Jal or CS-diff
[48] and LS-CS [43].

For solving the minimization problems given in (2.3), we used CRiXy://www.stanford.
edu/ ~boyd/cvx/ , for smaller sized problems. (< 4096). All simulations of Chapter 2.3.1.1 and
all results of Table 2.2 and Figs. 2.2 used CVX. For bigger signals/imayése Gize of the matrixd
becomes too large to store on a PC (needed by most existing solvers indloelioges in CVX) and

(i) direct matrix multiplications take too much time. For bigger images and structuréicesalike
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DFT times DWT, we wrote our own solver for (2.3) by using a modification ofdbée in L1Magic
[49]. We show results using this code 0% x 256 larynx image sequence (= 65536) in Fig. 2.3.
This code used the operator form of primal-dual interior point method. Wigh) éime only needs to
store the sampling mask which tak@sn) bits of storage and one uses FFT and fast DWT to perform
matrix-vector multiplications i) (n log n) time instead of)(n?) time. In fact for a,/m x /m image

the cost difference i€ (mlogm) versusO(b*). All our code, for both small and large problems, is
posted online alttp://www.ece.iastate.edu/ ~ namrata/SequentialCS.html . This

page also links to more experimental results.

2.3.1.1 Comparison of CS and Modified-CS

In Theorem 1 and Corollary 1, we derived sufficient conditions faxcéxeconstruction using
modified-CS. We first compare the sufficient conditions for modified-GEf@nCS, expressed only in
terms ofds’s. Sufficient conditions for an algorithm serve as a designer’s tooktide the number of
measurements needed for it and in that sense comparing the two suffaielitians is meaningful.

For modified-CS, from Corollary 1, the sufficient condition in terms of aiyig is 2do,, + d3, +

Ok + 0, + 204, , < 1. Usingk = s + e — u, this becomes
209y + O3 + Osteu + 0ope + 202 o1y < 1. (2.23)

For CS, two of the best (weakest) sufficient conditions that use®dyare given in [19, 11] and [10].
Between these two, it is not obvious which one is weaker. Using [19] 40 CS achieves exact

reconstruction if either
25 < V2 —1 0OF G5 + 035 < 1. (2.24)

To compare (2.23) and (2.24), we use= e = 0.02s which is typical for time series applications
(see Fig. 1.2). One way to compare them is to dise< cdo, [9, Corollary 3.4] to get the LHS’s of
both in terms of a scalar multiple 6$,,. Thus, (2.23) holds ifs; ¢+, < 1/2 andds, < 1/132.5. Since
Jstetu = 0520 < H52d2,, the second condition implies the first, and so anly < 1/132.5 is sufficient.

But, (2.24) holds i, < 1/241.5 which is clearly stronger.
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CS Cs Modified-CS (JA/=|A,|=0.02IN])
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(a) Plots ofpcs defined in (2.26) (b) Plots ofpcs 2 defined in (2.26) (c) Plots of py0acs defined in (2.25)

Figure 2.1 Plots opcs andpcs;2 (in (a) and (b)) ang,,,.qc s (in (C)) against /n
for 3 different values ofn/n. For p,,.qcs, we usedu = e = s/50.
Notice that, for any givem:/n, the maximum allowed sparsity/n,
for pmodcs < 1 is larger than that for which eithesfcg < 1 or
pcs2 < V2 — 1. Also, both are much smaller than what is observed
in simulations.

Alternatively, we can compare (2.23) and (2.24) using the high probabpipgubounds onhg as
in [18]. Using [18, Eq 3.22], for amn x n random Gaussian matrix, with high probability (w.h.p.),

85 < gnym(2), where

o () = [ (3)] v () = (2 )

and binary entropyd (r) := —rlogr — (1 — r)log(1 — r) for 0 < r < 1. Thus, w.h.p., modified-CS

achieves exact reconstruction from random-Gaussian measurements if

2u 3u st+e—u
PmodCS = 2gn/m — |+ In/m \ — + In/m \ —
n n n

2 2
s+e s+e+u
+gn/m (—n ) + 2gn/m <—n ) < 1. (2.25)

Similarly, from (2.24), w.h.p., CS achieves exact reconstruction fromdaanGaussian measurements

if either

2s 3s 2s
PCS = Gn/m (g) + Gn/m (E) <1lor pcs2 = gn/m (g) <v2-1 (2.26)

In Fig. 2.1, we plotocs, pcs,2 and pp.qacs againsts/n for three different choices of./n. For

s (from Fig. 1.2). As can be seen, the maximum allowed sparsity, i.e.

—
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the maximum allowed value of/n, for which eitherpcg < 1 or pcga < V2 — 1 is smaller than
that for whichp,,.qcs < 1. Thus, for a given number of measurements,w.h.p., modified-CS will
give exact reconstruction from random-Gaussian measurementsder $parsity sizes,/n, than CS
would. As also noted in [18], in all cases, the maximum allowgd is much smaller than what is
observed in simulations, because of the looseness of the bounds. Rantkeeason, the difference
between CS and modified-CS is also not as significant.

Table 2.1 Probability of exact reconstruction for modified-CS. Netithatu, = s and
e = 0 corresponds to CS.

(8 m =0.16n
. € 0 0.08s | 0.24s | 0.40s
0.04s 0.9980 | 0.9900| 0.8680| 0.4100
0.085 0.8880 | 0.8040]| 0.3820| 0.0580
P (CS)0.0000
(b) m =0.19n
. € 0 0.08s | 0.24s | 0.40s
0.085 0.9980 | 0.9980| 0.9540| 0.7700
0.12s 0.9700 | 0.9540| 0.7800] 0.4360
P (CS)0.0000
(c) m =0.25n
, € 0 0.085 | 0.24s | 0.40s
0.04s 1 1 1 1
0.20s 1 1 | 0.9900] 0.9520
0.355 0.9180 | 0.8220] 0.6320| 0.3780
0.505 0.4340 | 0.3300] 0.1720| 0.0600
s (CS)0.0020
(d) m = 0.30n (e) m = 0.40n
¢ 0 0.08s | 0.24s | 0.40s ¢ 0 0.40s
u u
0.04s 1 1 1 1 0.04s 1 1
0.20s 1 1 1 1 0.20s 1 1
0.355 1 1 | 0.9940] 0.9700|| 0.35s 1 1
0.50s 0.9620 | 0.9440| 0.8740| 0.6920|| 0.50s 1 1
P (CS)0.1400 P (CS)0.9820
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So far we only compared sufficient conditions. The actual allowést CS may be much larger.
To actually compare exact reconstruction ability of modified-CS with that gfw&Shus need Monte
Carlo. We use the following procedure to obtain a Monte Carlo estimate of timlpitity of exact
reconstruction using CS and modified-CS, for a give(i.e. we average over the joint distribution of

x andy given A).
1. Fix signal lengthp = 256 and its support size, = 0.1n = 26. Selectm, u ande.

2. Generate ther x n random-Gaussian matrix] (generate amn x n matrix with independent
identically distributed (i.i.d.) zero mean Gaussian entries and normalize eachrctbwinit/s

norm)
3. Repeat the following tot 500 times

(a) Generate the suppor,, of sizes, uniformly at random fronil, n).
(b) Generatéz)y ~ N(0,1007). Set(z) e = 0.
(c) Sety := Ax.
(d) Generate\ of sizew uniformly at random from the elements f.
(e) Generate\, of sizee, uniformly at random from the elementsafn] \ N.
(f) LetT = N UA.\ A. Run modified-CS, i.e. solve (2.3)). Call the outpyl,qcs-
(g) Run CS, i.e. solve (2.3) with being the empty set. Call the outpits.
4. Estimate the probability of exact reconstruction using modified-CS bytioguthe number of

timesz,,,qcs Was equal ter (“equal” was defined a§t,,oacs —2/||z]|2 < 107°) and dividing

by tot= 500.
5. Do the same for CS using-g.
6. Repeat for various values of, v ande.

We setn = 256 ands = 0.1n and we variedn between).16n = 1.6s and0.4n = 4s. For each

m, we variedu betweer).04s to s ande betweer) to 0.4s. We tabulate our results in Table 2The
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caseu = s ande = 0 corresponds to CNotice that whenn is just0.19n = 1.9s < 2s, modified-CS
achieves exact reconstruction more than 99.8% of the times<if0.08s ande < 0.08s. In this case,
CS haszeroprobability of exact reconstruction. Withh = 0.3n = 3s, CS has a very small (14%)
chance of exact reconstruction. On the other hand, modified-CS abrkst all the time foi: < 0.2s
ande < 0.4s. CS needs at least = 0.4n = 4s to work reliably.

The above simulation was done in a fashion similar to that of [18]. It doesampute then
required for Theorem 1 to hold. Theorem 1 says that i§ large enough for a given u, e, so that the
two conditions given there hold, modified-CS wallwayswork. But all we show above is that (1) for
certain large enough values of, the Monte Carlo estimate of the probability of exact reconstruction
using modified-CS is 1 (probability computed by averaging over the joint diiib of z andy); and
(2) whenu, e are small, this happens for much smaller valuegwivith modified-CS than with CS.

This issue has been discussed in detail in [50, 51] (probability or exgpebsnce of exact recon-
struction). In [50], the authors give a greedy pursuit algorithm to firdehpathological cases for CS,
i.e. to find the sparsest vectorfor which CS does not give exact reconstruction. The support $ize o
this vector then gives an upper bound on the sparsity that CS can hBedieloping a similar approach

for modified-CS is a useful open problem.

2.3.1.2 Sparsified and True (Compressible) Single Image

We first evaluated the single image reconstruction problem for a spaiisiféege. The image used
was a32 x 32 cardiac image (obtained by decimating the fi#lB x 128 cardiac image shown in Fig.
1.2), i.e.n = 1024. Its support size = 107 ~ 0.1n. We used the set of indices of the approximation
coefficients as the known part of the suppdrt, Thus,k = |T'| = 64 and sou = |A| > 43 which
is a significantly large fraction of. We compare the N-RMSE in Table 2.2. Even with such a large
unknown support size, modified-CS achieved exact reconstructiom 29% random Gaussian and
19% partial Fourier measurements. CS error in these cases was 34%%ndspectively.

We also did a comparison for actual cardiac and larynx images (whichrdyeapproximately
sparse). The results are tabulated in Table 2.2. Modified-CS works thette€S, though not by much

since|A| is a large fraction of N|. Here N refers to the3% support for any largé, e.g.5 = 99.
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Figure 2.2 Reconstructing thsparsified 32 x 32 cardiac image sequence.
s ~ 0.1n, v = 0.0ln, e = 0.005n. (&) H = G,, (b) H = MF.
Similar results were also obtained for the larynx sequence.

Table 2.2 Reconstruction Error (N-RMSE)
Sparsified| True True
Cardiac | Cardiac| Larynx
0.34 0.36 0.090

CSH =G,,m=0.29n)
Mod-CS H = G, m = 0.29n) 0 0.14 0.033
CSH=MF,m=0.19n) 0.13 0.12 0.097
Mod-CS(H = MF, m = 0.19n) 0 0.11 0.025

2.3.1.3 Sparsified Image Sequences
We compared modified-CS with simple CS (CS at each time instant), CS-dif§€l&ual) and
LS-CS [43] for the sparsified2 x 32 cardiac sequence in Fig. 2.2. Modified-CS was implemented as
in Algorithm 1. Att = 0, the setl” was empty and we used 50% measurements. For this sequence,
|N¢| ~ 0.1n = 107, v = |A] < 10 = 0.0ln ande = |A.| < 5 = 0.005n. Sinceu < |N;| and
e < |N¢|, modified-CS achieves exact reconstruction with as few as 16% measuseae> 0. Fig.
2.2(a) usedd = G, (compression/single-pixel imaging) and Fig. 2.2(b) usee: M F' (MRI). As can
be seen, simple CS has very large error. CS-diff and LS-CS also lgaigcantly nonzero error since
the exact sparsity size of both the signal difference and the signaliedsgdequal to/larger than the

signal’s sparsity sizeVlodified-CS error isl0~® or less (exact for numerical implementatio®imilar
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conclusions were also obtained for the sparsified larynx sequercpiGd=ig. 3].

2.3.1.4 True (Compressible) Image Sequences

Finally we did the comparison for actual image sequences which are onlyressiige. We show
results on the larynx (vocal tract) image sequence of Fig. 1.2. For Figveused the entir256 x 256
image sequence with partial Fourier measuremeitis = 0, modified-CS and LS-CS usédo be the
set of indices of the approximation coefficients.

Fig. 2.3 shows reconstruction of the full larynx sequence uging M F, m = 0.19n and three
choices ofmg. In 2.3(a), we compare the reconstructed image sequence using mdaiffiedth that
using simple CS. The error (N-RMSE) was 8-11% for CS, while it was stabR% or lesser for
modified-CS. Sinceny is large enough for CS to work, the N-RMSE of CS-diff (not shown) also
started at a small value of 2% for the first few frames, but kept incrgasawly over time. In 2.3(b),
2.3(c), we show N-RMSE comparisons with simple CS, CS-diff and LS-@$hée plot shown, the
LS-CS error is close to that of modified-CS because we implemented LS estimatmgnconjugate
gradient and did not allow the solution to converge (forcibly ran it with aiced number of iterations).
Without this tweeking, LS-CS error was much higher, since the computed it8iaktimate itself was
inaccurate.

Notice from Fig. 2.3, thatnodifiedCS significantly outperform CS and CS-diff. In most cases, both
also outperform LS-C3n Fig. 2.3(c), CS-diff performs so poorly primarily because the initiabeat
t = 0 is very large (since we use ontyy = 0.19n). As a result the difference signalat 1 is not
compressible enough, making its error large and so on. But evenmhénlarger and the initial error

is small, CS-diff is still the worst, although the difference in errors is noti@e|a.g. in Fig. 2.3(b).

2.3.2 Experimental results of reg-mod-BP and reg-mod-CS

2.3.2.1 Comparing reg-mod-BP with modified-CS

In this section, we show two types of numerical experiments. The first sinsudatntized signals
and signal estimates. This is the case where some constraints are activenzignaprobability. The

good set,T, = Ta+gU Tagis also non empty with nonzero probability. Hence, for a given small
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enoughn, reg-mod-BP has significantly higher exact reconstruction probabilitys(n ), as compared
to both mod-CS [25] and weighted [26] and much higher than that of BP [1, 18]. Alternatively,
it also requires a significantly reducedfor exact reconstruction with probability onggxac{1). In
computingpexac{n) We average over the distribution of 7" and i, as also in [25, 18]. All numbers
are computed based on 100 Monte Carlo simulations. To compue(1), we tried various values
of n for each algorithm and computed the smallesequired for exact recovery always (in all 100
simulations).

We also do a second simulation where signal estimates are not quantized.

In the following steps, the notation ~ discrete-unifornfa,, as, . . . a,) means that is equally
likely to be equal tauy, ag, ... ora,. We useta as short for+a, —a. Also, z ~ uniform(a, b)
generates a scalar uniform random variable in the rgmdé The notation; “pforalli € S means

that, for alli € S, eachz; is identically distributed according to P and is independent of all the others.

2K | BP | mod-CS | weighted/; | Reg-mod-BP
Pexac(0.15m) 4 0 0.18 0.16 0.64
N-RMSEQ.15m) | 4 | 1.011| 0.059 0.060 0.029
Nexacl 1) 4 10397 | 0.2im 0.21m 0.18n
Pexac 0.15m) 10 0 0.18 0.16 0.39
N-RMSE(Q.15m) | 10 | 1.011 | 0.059 0.060 0.032
Nexacl 1) 10 | 0.4n | 0.21m 0.21m 0.20m

Table 2.3 Quantized signals and signal estimates. Recall that |T'| = 26. For
2K = 4, the expected sizes df,, T, and T, are E[|T,|] = 10.01,
E[|T,]] = 5.27 andE[|T3]] = 20.73. For 2K = 10, E[|T,]] = 4.28,
E[|T,|] = 2.3 andE[|T},|] = 23.7.

BP | mod-CS | weighted/; | Reg-mod-BP
Pexact 0.15m) 0 0.26 0.26 0.57
N-RMSEQ.15m) | 0.967| 0.152 0.152 0.082
Nexacf 1) 0.4n | 0.2Im 0.2Im 0.20m

Table 2.4 Quantized signals and signal estimates: case 2. Recalkthat|T| = 26.
The expected sizes @, T, andT; areE[|T,|] = 9.02, E[|T,|] = 4.58 and
E[|T,|] = 21.42.
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BP | mod-CS | weighted?; | Reg-mod-BP
Pexac(0.18m) 0 0.87 0.87 0.87
N-RMSE(0.18n) | 0.961 | 0.0175 0.0177 0.0123
N-RMSE(0.11n) | 1.05 0.179 0.175 0.0635
Nexac( 1) 0.39m | 0.21m 0.21m 0.21m

Table 2.5 The non quantized case.

For the quantized case was am = 256 length sparse vector with support si2é| = 0.1m = 26
and support estimate error sizes= |[A| = |A.| = 0.1| N| = 3. We generated the matrix once as an
n x m random Gaussian matrix (generateran m matrix with i.i.d zero mean Gaussian entries and

normalize each column to urig norm). The following steps were repeated+oi 00 times.

1. The support sety, of size| N

, was generated uniformly at random frdinm|. The support
misses set)\, of sizeu, was generated uniformly at random from the elemenf$ .ot he support
extras setA., also of sizeu, was generated uniformly at random from the element§afThe

support estimatél’ = N U A, \ A and thu§T'| = |N| = 26.

2. We generated; w discrete-uniforn:1) fori € N N T x; i discrete-uniforni+0.1) for
1 € A,andz; = 0fori € N znynr andxa are also independent of each other. We generated
o = x7p + v wherey; ud discrete-uniforn@0, + £, +2£,--- & p) fori € TN N andy; ud
discrete-unifornt %, +2 4%, - - - £ p) fori € A.. We usedp = 0.1 and tried two choices oK.
Notice that, for a giverk’, the number of equally likely values that — ji; for i € T' can take

are roughly2K + 1 (2K wheni € A.). The constraint is active whexy — fi; is equal totp.

Thus, the expected size of the active set is rou%m.

3. We generated = Azx. We solved reg-mod-BP given in (2.14) with = 0.1; BP given
in (1.6); mod-CS given in (2.3); and weightéd given in (1.8) with various choices of:
[0.1 0.05 0.01 0.001]. We used the CVX optimization packad#tp://www.stanford.
edu/boyd/cvx/ , which uses primal-dual interior point method for solving the minimization

problem.

We_computedexacin2).as.the the number of times was equal tar (“equal” was defined agz —
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z|]2/]|z]|2 < 1075) divided by tot= 100. For weighted/;, we computegexac(n) for each choice of

~ and recorded the largest one. This corresponded-to0.1. We tabulate results in Table 2.3. In the
first row, we recorexac(0.15m) for all the methods, when using = 2. We also record the Monte
Carlo average of the sizes of the active|§gt = |Ta+ U Tx.|; of the good setT;| = |Ta+gU Tagl and

of the bad sefT},| = k — |T,|. In the second row, we record the normalized root mean squared error
(N-RMSE). In the third row, we recordexac{1). In the next three rows, we repeat the same things with
K =5.

As can be seen,| is about half the size of the active s¢f,|. As K is increased|T,| and
hence|T,| reduces|(}| increases) and thysxac(0.15m) decreases anekxac(1) increases. Also, for
mod-CS and weightefl, pexac{0.15m) is significantly smaller than for reg-mod-BP, whilgyac(1) is
larger.

Next, we simulated a more realistic scenario — the case of 3-bit quantized irtiengles: and /i
take integer values between 0 to 7). Here again= 256, |[N| = 0.1m = 26, andu = |A| =
|Ae] = 0.1|N| = 3. The setsN, A, A, andT" were generated as before. We generaztgadivd
discrete-uniform3, 4,...7) fori € N N T; z; ~ discrete-unifornil, 2) for i € A; andx; = 0 for
i € N¢. Also, ar = clip(zr + v) wherey; ~ discrete-unifornp—2,—1,0,1,2) fori € TN N; and
v; ~ discrete-uniforni—2, —1,1,2) for i € A.. Also clip(z) clips any value more than 7 to 7 and any
value less than zero to zero. Clearly, in this case 2. We record our results in Table 2.4. Similar
conclusions as before can be drawn.

Finally, we simulated the non-quantized case. We useg 256, |[N| = 0.1m = 26, andu =
Al = |A¢] = 0.1|N| = 3. We generated; i discrete-uniformt1) fori € N NT; z; i
discrete-uniform+0.1) for i € A, andx; = 0 for i € N¢. The signal estimateir = zp + v
wherey; b uniform(—p, p) with p = 0.1. We tabulate our results in Table 2.5. Sincis a real vector
(not quantized), the probability of any constraint being active is zeltwusTas expecteghexact and
nexactare the same for reg-mod-BP and mod-CS and weightetthough significantly better than BP.
However, the N-RMSE for reg-mod-BP is significantly lower than that fodr® and weighted;

also, particularly whem = 0.11m.
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2.3.2.2 Comparing reg-mod-CS with Modified-CS

We ran a Monte Carlo simulation to compare Modified-CS with reg-mod-CS &ssfsignals. We
fixedn = 256, s = 26 ~ 0.1n, u = e = 0.08s. We usedn = 0.16n,0.12n,0.11n in three sets of
simulations done in a fashion similar to that of Chapter 2.3.1.1, but with the follogéiagge. In each
run of a simulation, we generated each element @f, to be i.i.d. =1 with probability (w.p.) 1/2
and each element @fa and ofa, to be i.i.d. £0.25 w.p. 1/2. We generatedy ~ A (ux,0.011)
and we setry. = 0. We sety := Ax. We tested reg-mod-CS with various valuesyofy = 0
corresponds to modified-CS). We used+ot0. The results are tabulated in Table 2.6. We computed
the exact reconstruction probability as in Chapter 2.3.1.1 by counting theamwhtmesz,., equals
2 and normalizing. As can be seen, reg-mod-CS does not improve therezanstruction probability,
in fact it can reduce it. This is primarily because the elemen{g:Qf,) o, are often nonzero, though
smalP. But, it significantly reduces the reconstruction error, particularly whea small.

Table 2.6 Comparing probability of exact reconstruction (prob) aeconstruction error
(error) of reg-mod-CS with different’s. v = 0 corresponds to modified-CS.

(@ m =0.16n
~ [ 0(modCS)[ 0.001] 005 | 01 | 05 1
prob 0.76 0.76 0.74 0.74 0.70 0.34
error 0.0484 0.0469| 0.0421| 0.0350| 0.0273| 0.0286

(b) m =0.12n () m=0.11n
~ | 0(modCS) 1 ~ | 0(modCS) 1
prob 0.04 0 prob 0 0
error 0.2027 0.0791| | error 0.3783 0.0965

We compared reg-mod-CS with other algorithms in Fig. 2.4. We usg® & 32 block of it
with random Gaussian measurements. For the subfigures in Fig. 2.4, ddduse G, (random
Gaussian) andhy = 0.19n. Fig. 2.4(a) and 2.4(b) used = 0.19n,0.06n respectively. At each,
RegModCS-MAP solved (2.22) with,, ag estimated using (A.44) from a few frames of the sequence

treated as training data. The resulting= 5\;,/202 was 0.007. RegModCS-exp-opt solved (2.20) with

2But if we use, ., to first estimate the support using a small threshaldand then estimate the signal A%,Ty, this
probability does not decrease as much and in fact it even increasesawis smaller.
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T = Ny_1, pr = (Zregt—1)r and we experimented with many valuesyolnd chose the one which
gave the smallest error. Notice from Fig. 2.4(a) that RegModCS-MABsgMSEs which are very

close to those of RegModCS-exp-opt.
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Original sequence

(a) Reconstructed sequendé=M F. m=0.19n, mo=0.5n.
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(b) H=M F, mo=0.2n, m=0.19n (c) H=M F', my=0.19n, m=0.19n

Figure 2.3 Reconstructing the 256x2&€&ual (compressiblejocal tract (larynx)
image sequence frosimulated MRImeasurements, i.ed = MF.
All three figures usedn = 0.19n for ¢ > 0 but used different val-
ues ofmg. Image sizen = 2562 = 65536. 99% energy support,
|N¢| = 0.07n; u ~ 0.001n. In Fig. 2.3(a), modified-CS used= 10>
which is the smallest magnitude element in the 99% support.
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(a) H=G,, mo=0.19n, m=0.19n (b) H=G,., mp=0.19n, m=0.06n

Figure 2.4 Reconstructing3 x 32 block of theactual (compressibldarynx se-
guence from random Gaussian measurements.1024, 99%-energy
support sizes ~ 0.07n, u ~ 0.001n ande ~ 0.002n. Modified-CS
useda = 502 whenm = 0.19n and increased it tae = 80% when
m = 0.06n.
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CHAPTER 3. Sparse Reconstruction for Noisy Measurements with &tial Support

and Signal Knowledge

In Chapter 2, we introduced modified-CS and reg-mod-BP for the nosseleasurements’ case.
Sufficient conditions for exact reconstruction were derived andstavgued that these are much weaker
than those needed for CS. In this chapter, we bound the reconstruotisroemodified-BPDN and
regularized modified-BPDN which are noisy cases of modified-CS anthoeyBP. We use a strategy
similar to the results of [2] to bound the reconstruction error and henddikesn [2], the bounds we
obtain are computableThen we also derive the bounds without sufficient conditions that amu

tighter. Simulations are shown to compare the bounds.

3.1 Modified-BPDN

In this section, our goal is to reconstruct thelength sparse signal from then-length measure-
menty withm > n

y:=Ax+w (3.1)

The measurement is obtained from arx m measurement matrid and corrupted by a-length
vector noisew. The support ofc denoted asV consists of three partsN = 7'U A \ A, where
A andT are disjoint andA. C 7. We use the partially known suppdft which the known part of
support whileA. is the error in the known part of support aidis the unknown part. We also define
N.2TUA =NUA.,.

In Chapter 2, equation (2.3) gives the modified-CS algorithm under nsgseleasurements. We

relax the equality constraint of this equation to propose modified-BPDNi#igousing a modification
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of the BPDN idea[1]. We solve
1 2
min S|y — Abllz + bz |1 (3.2)

Then the solution to this convex optimization problmwill be the reconstructed signal of the problem.
In [28, 52], we provided a computable bound for the reconstructioor &s well as the sufficient
conditions. We will not address it here since mod-BPDN is a special dasg-onod-BPDN and the
bound follows by settingh = 0 of the bound for reg-mod-BPDN. We will compare the bounds of

BPDN, mod-BPDN in the next section.

3.2 Regularized Modified-BPDN for Noisy Sparse Reconstructiowith Partial

Erroneous Support and Signal Value Knowledge

In previous section, we introduced modified-BPDN using partially knowgpsett to reconstruct
the sparse signal from noisy measurements. In this section, we study thedni@tfeconstruct using
both the support information and the signal estimate on it in this chapter. @uisgiill to reconstruct
anm-length sparse vectos;, with support,/V, from ann < m length noisy measurement vectgr,
satisfying

y:=Ax +w (3.3)

when the following two things are available: (i) partial, and partly errondausyledge of the signal’'s
support, denoted by’; and (ii) an erroneous estimate of the signal value§ pdenoted by(/i)7. w

is the measurement noise adds the measurement matrix. The true support of the sigWiatan be
rewritten asNV = T U A\ A, andA & N\ T andA. = T'\ N are the errors in the support estimate.

The signal estimate is assumed to be zero albhg.e.

. (W)
L= (3.4)
Ore
and the signal itself can be rewritten as
(#)vur = ()Nur +V
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wherer denotes the error in the prior signal estimate. It is assumed that the eergygiv |3, is small
compared to the signal enerdjy;||3.
In this section, we introduce regularized modified-BPDN (reg-mod-BPBiN) obtain a com-

putable bound on its reconstruction error using an approach motivat@q. iBeg-mod-BPDN solves
. 1 9 1 A2
min yllore|ly + 5 lly — Ab[3 + SAIbr -zl (36)

i.e. it tries to find the signal that is sparsest outside th& sethile being “close enough” tgr onT’,
and while satisfying the data constraint. Reg-mod-BPDN uses the fadl flsat good estimate of the
true support)V, and thatir is a good estimate afr. In particular, fori € A, this implies that ;| is
close to zero (since; = 0 fori € A.). We also show how to use the reconstruction error bound result
to obtain another computable bound that holds without any sufficient comsliiod is tighter. This
allows easy bound comparisons of the various approaches. A similétrfresnod-BPDN and BPDN
follows as a direct corollary.

Before we bound the reconstruction error for reg-mod-BPDN, we visituss some related ap-
proaches which may be confused with reg-mod-BPDN. Notice that RegBR@N may also be
interpreted as a Bayesian CS or a model-based CS approach. Recgkninvibis area includes

[53, 54, 13, 55, 56, 57, 58].

3.2.1 Some Related Approaches

Before going further, we discuss bel@avfew approaches that are related to, but different from
reg-mod-BPDN, and we argue when and why these will be worse tgamogl-BPDNWe show com-
parisons with all these in Fig. 3.1.

One seemingly related approach is what can be cé@ll®danod-residuallt computes

&r = fur, #pe = b, Whereb, solves

o1 .
min. s lly — Arivr — Agebell§ + el (3.7)

whereb, stands forb) <. This is solving a sparse recovery probleniiiyi.e. it is implicitly assuming
thatz7 is either equal tqiz or very close to it. Thus, this also works only when the signal value prior

is very strong.
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Both CS-residual and CS-mod-residual can be interpreted as exteoEBRBN, and [2, Theorem
8] can be used to bound their error. In either case, the bound will caletains proportional tdj(xp —
fir)||2 and as a result, it will be large whenever the prior is not strong erfodtis is also seen from
our simulation experiments shown in Fig. 3.1 where we provide comparisortbdaase of good
signal value prior (0.1% error in initial signal estimate) and bad signal \@#iioe (10% error in initial
signal estimate). We vary support errors from 5% to 20% misses, whifgrgéhe extras fixed at
10%.

Reg-mod-BPDN can also be confused witldified-CS-residualhich computes[40]

& = [+ b, whereb solves
.1 .
min. |y — Aj = Ab[3 + 4lbre | (3.8)

This is indeed related to reg-mod-BPDN and in fact this inspired it. We studiscdethpirically in
Chapter 6. However, one cannot get good error bounds for it ineasy fashion. Notice that the
minimization is over the entire vectéy while the/; cost is only orbpe.

One may also consider solving the following variant of reg-mod-BPDN (alethis reg-mod-
BPDN-va:

min bl + 5y — AbJ3 + SAIb— ll (3.9)

Sincej: is supported off’, the regularization term can be rewritten)d® — 1|3 = \|br — fr||3 +
A||br<||3. Thus, in addition to thé; norm cost orbr- imposed by the first term, this last term is also
imposing ar¥s norm cost on it. If\ is large enough, th&, norm cost will encourage the energy of the
solution to be spread out dff, thus causing it to be less sparse. Since the:risevery sparse off“
(JA] is small compared to the support size also), we will end up with a largereegcewor. [see Fig.
3.1(a)]. However, if we compare the two approaches for compressinlalsequences, e.g. the larynx
sequence, it is difficult to say which will be better [see Fig. 3.3].

Finally, one may solve the followingye can call it reg-BPDI)

: 1 1 X
min bl + 51y — A+ S Mb - 43 (3.10)

YIn either case, one can assume that— /1) is supported om\ and the “noise” isw + Az (zr — jir). Thus, CS-
residual error can be bounded BY( A, A)(||w||2 + ||Ar(zr — fir)||2) while CS-mod-residual error can be bounded by
lzr = firllz + C(Aze, A)([[wllz + Az (zr — fr)2).

2inytheglimitifyy/A/2sisimuchilarger thary, we may get a completely non-sparse solution.
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This has two limitations. (1) Like CS-residual, this also does not use the ttavtien?” is an accurate
estimate of the true suppoft;)r- is much more sparse compared with the full— ). (2) Its last

term is the same as that of reg-mod-BPDN-var which also causes the salolenpeas above.

3.3 Regularized Modified-BPDN (Reg-mod-BPDN)

Consider the sparse recovery problem when partial support kngeviscavailable. As explained
earlier, one can use mod-BPDN given in (3.2). When the support estimateusate, i.e.|A| and
|A.| are small, mod-BPDN provides accurate recovery with fewer measuretiamtsvhat BPDN
needs. However, it puts no cost bp except the cost imposed by the data term. Thus, when very few
measurements are available or when the noise is lafgean become larger than required (in order to
reduce the data term). A similar, though lesser, bias will occur with weightatso wherny’ < ~. To

address this, when reliable prior signal value knowledge is availableaw@stead solve
: A 1 2 1 ~ 2
min L(8) £ Albre |y + 5 lly — Ab[13 + SAllbr — jir)3 (3.11)

which we callreg-mod-BPDNIts solution, denoted by, serves as the reconstruction of the unknown
signal,z. Notice that the first term helps to find the solution that is sparsest oufsithe second term
imposes the data constraint while the third term imposes closengssoog?.

Mod-BPDN is the special case of (3.11) wher= 0. BPDN is also a special case with= 0 and
T = () (so thatA = N).

3.3.1 Limitations and Assumptions

A limitation of adding the regularizing term\||br — fir||3 is as follows. It encourages the solution
to be close tqi)a, which is not zero. As a resulfi)a, will also not be zero (except ik is very
small) even thougtiz)a, = 0. Thus, even in the noise-free case, reg-mod-BPDN will not achieve
exact reconstruction. In both noise-free and noisy caség) K, is large,()a, being close tdi)a,
can result in large error. Thus, we need the assumptior{hat is small.

For the reason above, when we estimate the suppdrtwe need to use a nonzero threshold, i.e.
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compute
N = {i:|&] > p} (3.12)

withap > 0. We note that thresholding as above is donkyfor support estimation and not for improv-
ing the actual reconstruction. Support estimation is required in dynamimoegBPDN (described
below) where we use the support estimate from the previous time instantagihert knowledgerl’,
for the current time.

In summary, to get a small error reconstruction, reg-mod-BPDN reqthieefollowing (this can

also be seen from the result of Theorem 4):

1. T'is a good estimate of the true signal’s suppdft,i.e. |A| and|A.| are small compared {aV|;

and

2. i is a good estimate afy. Fori € A, this implies that/i;| is close to zero (since; = 0 for

1€ AL).

3. For accurate support estimation, we also need that most nonzero Wevherare larger than

max;ea, |f1;| (for exact support estimation, we need this to hold for all nonzero eleroém)s

The smallest nonzero elementsofare usually on the seh. In this case, the third assumption is

equivalent to requiring that most elementseof are larger thamax;eca, |-

3.3.2 Dynamic Reg-Mod-BPDN for Recursive Recovery

An important application of reg-mod-BPDN is for recursively recongdingca time sequence of
sparse signals from undersampled measurements, e.g. for dynamic &Rl this, at time we solve
(3.11) WithT = N,_1, (i)7 = (#_1)7 and(i)re = 0. HereN,_; is the support estimate of the
previous reconstructiori; ;. At the initial time,¢ = 0, we can either initialize with BPDN, or with
mod-BPDN usind from prior knowledge, e.g. for wavelet sparse imadesould be the set of indices
of the approximation coefficients. We summarize the stepwise dynamic redg3@Pb&t approach in
Algorithm 2. Notice that at = 0, one may need more measurements since the prior knowledge of
may not be very accurate. Hence, we yse- Agxo + wy WhereA is anng x m measurement matrix

with ng > n.
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In Algorithm 2, we should reiterate that for support estimation, we neede@ ubresholgh > 0.
The threshold should be large enough so that most elemefsof= 7"\ N; = Ny \ N do not get
detected into the support.

We briefly discuss here the stability of dynamic reg-mod-BPDN (recorigiruerror and support
estimation errors bounded by a time-invariant and small value at all times)g @siapproach similar
to that of [59], it should be possible to show the following. If {i)s large enough (so tha¥; does
not falsely detect any element that got removed fi9py (ii) the newly added elements to the current
support, Ny, either get added at a large enough value to get detected immediately, or aviihite
delay their magnitude becomes large enough to get detected; and (iii) the thaatisfies certain

conditions (for a given support size and support change sizejnoeiBPDN will be stable.

Algorithm 2 Dynamic Reg-mod-BPDN

At ¢t = 0, computety as the solution ofnin, ~||(b)7e |1 + 3lyo — Abl|3, whereT is either empty or
is available from prior knowledge. Compudé) = {i € [1,...,m] : [(Z0):| > p}. SetT + Ny and
()1 « (Zo)r

Fort > 0, do

1. Reg-Mod-BPDN.LetT = N;_; and letiiy = (24—1)7. Computez; as the solution of (3.11).
2. Estimate Support.N; = {i € [1,....,m] : |(Z)]; > p}.
3. Output the reconstructioty.

FeedbackV, andz,; increment, and go to step 1.

3.4 Bounding the Reconstruction Error

In this section, we bound the reconstruction error of reg-mod-BPDNeSitod-BPDN and BPDN
are special cases, their results follow as direct corollaries. The rfesUPDN is the same as [2,
Theorem 8]. In Chapter 5.2.1, we define the terms needed to state olir tesb.2.2 we state our

result and discuss its implications. In 5.2.3, we give the proof outline.
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3.4.1 Definitions

We begin by defining the function that we want to minimize as
L(b) £ L1(b) +[lbres (3.13)
where
sl 2 1 2
Li(b) = Slly — Abll3 + 5Albr — for 3 (3.14)
contains the twd, norm terms (data fidelity term and the regularization term). If we conshriirbe
supported off" U S for someS C T, then the minimizer of; (b) will be the regularized least squares

(LS) estimator obtained when we put a weighan ||br — fi7 |2 and a weight zero offbs — jis||3.

Let S be a given subset ak. Next, we define three matrices which will be frequently used in our

results. Let
It Orgs
Qra(S) = Arus’Arus + A (3.15)
Osr Oss
Mry 2 T — Ap(Ar'Ap + Mp) ' Ar (3.16)
Pra(S) £ (As'MraAs)™! (3.17)

wherelr is a|T| x |T'| identity matrix and)7 g, 05 7, 05, are all zeros matrices with siz€g| x | S|,

|S| x |T| and|S| x |S].

Assumption 1 We assume tha@r \(A) is invertible. This implies that, for an§y C A, the functions

L(b) and L, (b) are strictly convex over the set of all vectors supported’ansS.

Proposition 2 When\ > 0, Q7. (S5) is invertible if Ag has full rank. Wher\ = 0 (mod-BPDN), this

will hold if Aryg has full rank.

The proof is easy and is given in Appendix B.1.

Let S C A. Consider minimizingL(b) over b supported ori” U S. Whenb ). = 0 and
Assumption 1 holdsL(brygs) is strictly convex and thus has a unique minimizer. The same holds for
Li(bryus). Define their respective unique minimizers as

dra(S) £ arg mbin L(b) subjectto bipygy =0 (3.18)

arg rnbin Ly1(b) subjectto bryg)e =0 (3.19)
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As explained earliegr ) (.S) is the regularized LS estimate @fwhen assuming thatis supported on

T U S and with the weights mentioned earlier. It is easy to see that

Afir
lera(S)]rus = Qra(S)™ | Arusy +
Os
[erA(S)](rusye = 0 (3.20)
In a fashion similar to [2], define
ERCTA(S) é 1-— max HPT’)\(S)AS/MT’)\AC‘J”l (321)

wgTusS

This is different from the ERC of [2] but simplifies to it whéh = (), S = N and\ = 0. In [2],

the ERC, which in our notation iB RCy (), being strictly positive, along witly approaching zero,
ensured exact recovery of BPDN in the noise-free case. Henc#, IBRC was an acronym fdtxact
Recovery Coefficientn this work, the same holds for mod-BPDN.ARC7(A) > 0, the solution

of mod-BPDN approaches the trueas~y approaches zero. We explain this further in Remark 6 below.
However, no similar claim can be made for reg-mod-BPDN. On the other, i@ntthe reconstruction
error bounds, ERC serves the exact same purpose for reg-mobtitBBO does for BPDN in [2]:
ERCr\(A) > 0 and~y greater than a certain lower bound ensures that the reg-mod-BPDN ¢br mo

BPDN) error can be bounded by modifying the approach of [2].

3.4.2 Reconstruction error bound

The reconstruction error can be bounded as follows.

Theorem 4 If Q7 \(A) is invertible, ERCr x(A) > 0 and

o 1A@ua)’(y — Aera(8))
- ERCr(A)

¥ > rA(A) (3.22)
then,

1. L(b) has a unique minimizet..

2. The minimizeu;, is equal todr x(A), and thus is supported 6fi U A.
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3. Its error can be bounded as

lz — 22 < YVIA[fL(A) + Mo(A)|zr — frll2 + f3(A)]|w]l2

where

£1(8) 2 \/II(Ar' Ap + 7)1 Az’ AN PrA() |3 + | Pra(A) 3,
£2(8) 2 Qra(A) 2,
F3(A) 2 Q1 A(A) T Arua |2, (3.23)

Pr\(A) is defined in (3.17) an@7 ,(A) in (3.15).

Corollary 2 (corollaries for mod-BPDN and BPDN) The result for mod-BPDN follows by setting
= 0 in Theorem 4. The result for BPDN follows by setting= 0, 7" = ) (and soA = N).

This result is the same as [2, Theorem 8].

Remark 5 (smallesty) Notice that the error bound above is an increasing function.offhusy =

V7.2 (A) gives the smallest bound.

In words, Theorem 4 says that, @7 »(A) is invertible, ERCr 5 (A) is positive, andy is large
enough (larger than*), thenL(b) has a unique minimizef;, andz is supported o’ UA = N U A..
This means that the only wrong elements that can possibly be part of thersopg are elements
of A.. Moreover, the error betweehand the truer is bounded by a value that is small as long as
the noise,||w||2, is small, the prior term|jzr — fir||2, is small andyz. \ (A) is small. By rewriting
y — Acp\(A) = A(x — crp(A)) +w and using Lemma 7 (given in the Appendix B.2) one can upper
bound~* by terms that are increasing functions|e#||» and ||z — fir||2. Thus, as long as these are
small, the bound is small.

As shown in Proposition 207 (A) is invertible if A > 0 and A, is full rank or if A7a is full
rank.

Next, we use the idea of [2, Corollary 10] to show thaRC7((A) is anExact Recovery Coefficient

for mod-BPDN.

Remark 6 (ERC and exact recovery of mod-BPDN)For mod-BPDN¢ro(A) is the LS estimate when

TUL ing (3.20), (1.2), and the fact thais supported oV C T'UA, itis easy to

—
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see that in the noise-free(= 0) casecro(A) = zrua. Hence the numerator O/ﬁ}’O(A) will be zero.
Thus, using Theorem 4, ERC7y(A) > 0, the mod-BPDN error satisfigs: — |2 < v+/|A]f1(A).

Thus the mod-BPDN solutiott, will approach the truer as~ approaches zero. Moreover, as long as

min;e N |z

RN ONTON

, at least the support af will equal the true supporty 3.

We show a numerical comparison of the results of reg-mod-BPDN, mod-BRTNBPDN in Table
3.1 (simulation details given in Chapter 3.4). Notice that BPDN néétsof the measurements for its
sufficient conditions to start holding (ERC to become positive) whereasBRiaN only needd9%.
Moreover, even wit0% of the measurements, the ERC of BPDN is just positive and very small. As
a result, its error bound is largeé7% normalized mean squared error (NMSE)). Similarly, notice that
mod-BPDN needs > 19%m for its sufficient conditions to start holdingi{ua to become full rank
which is needed fof)7(A) to be invertible). For reg-mod-BPDN which only needs to be full

rank,n = 13%m suffices.

Remark 7 A sufficient conditions comparison only provides a comparison of \atgiven result can
be applied to provide a bound on the reconstruction error. In other woittells us under what
conditions we can guarantee that the reconstruction error of a givemoagoh will be small (below a
bound). Of course this does not mean that we cannot get small@resr when the sufficient condition
does not hold, e.g., in simulations, BPDN provides a good reconstrucsimg umuch less than 90%
of the measurements. However, when< 90%m we cannot bound its reconstruction error using

Theorem 4 above.

3.4.3 Proof Outline
To prove Theorem 4, we use the following approach motivated by th&f.of [

1. We first bound|dr x(A) —cr A (A)|2 by simplifying the necessary and sufficient condition for it
to be the minimizer of.(b) whenb is supported ofi’' UA. This is done in Lemma 6 in Appendix

B.2.

3If we bounded thé.., norm of the error as done in [2] we would get a looser upper bound erettowed’s for this.
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2. We bound|jcz A (A) — z||2 using the expression farr \(A) in (3.20) and substituting =
Aruazrua +w init (recall thatx is zero outsidd” U A). This is done in Lemma 7 in Appendix

B.2.
3. We can bound{dr »(A) — z||2 using the above two bounds and the triangle inequality.

4. We use an approach similar to [2, Lemma 6] to find the sufficient conditioghsrwhichd , (A)
is also the unconstrained unique minimizetgb), i.e. £ = dr x(A). This is done in Lemma 8

in Appendix B.2.

The last step (Lemma 8) helps prove the first two parts of Theorem 4. Comghire above four steps,
we get the third part (error bound). We give the lemmas in Appendix B.8y @he proved in Appendix
B.4.1, B.4.2 and B.4.3.

Two key differences in the above approach with respect to the reda} afe

e cr ) (A) is the regularized LS estimate instead of the LS estimate in [2]. This helps obtain a
better and simpler error bound of reg-mod-BPDN than when using thetirfSag¢s. Of course,

when\ = 0 (mod-BPDN or BPDN)¢7o(A) is just the LS estimate again.

e Forreg-mod-BPDN (and also for mod-BPDN), the subgradient seedf term iso||bre |1 |p—a,. , (a)
and so anyp in this set is zero off’, and only had|¢a || < 1. Since|A| <« |N|, this helps to

get a tighter bound offcr A (A) — drA(A)||2 in step 1 above as compared to that for BPDN [2]

(see proof of Lemma 6 for details).

3.5 Tighter Bounds without Sufficient Conditions

The problem with the error bounds for reg-mod-BPDN, mod-BPDN, BRIDNS-CS [60] is that
they all hold under different sufficient conditions. This makes it difficalcompare them. Moreover,
the bound is particularly loose whenis such that the sufficient conditions just get satisfied. This is
because the ERC is just positive but very small (resulting in a very tafgend hence a very large
bound). To address this issue, in this section, we obtain a bound thatwibhagit any sufficient
conditions and that is also tighter, while still being computable.

Thekeysideathatwesuse is as follows:
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e we modify Theorem 4 to hold for “sparse-compressible” signals [60] faesparse signals;,
in which some nonzero coefficients out of the Aeare small (“compressible”) compared to the

rest; and then

e we minimize the resulting bound over all allowed split-upg @fito non-compressible and com-

pressible parts.

Let A C A be such that the conditions of Theorem 4 hold for it. Then the first stepvieso
modifying Theorem 4 to bound the error for reconstructinghen we treat: A\A @S the “compressible”
part. The main difference here is in bounding- ,(A) — z||2 which now has a larger bound because
of NV We do this in Lemma 9 in the Appendix B.3. Notice from the proofs of Lemma 6 anthha
8 in Appendix B.4.1 and B.4.3 that nothing in their result changes if we replaty a A C A.

Combining Lemma 9 with Lemmas 6 and 8 applied fomstead ofA leads to the following corollary.
Corollary 3 Consider aA C A. If Qrx(A) is invertible, ERCyx(A) > 0, andy = ~5.,(A), then

lz = &l < (TN A, A, 775 (8)) (3.24)
where

FTNAA ) 2 WIAAR) + M o(B)ar — firllz + f(A)[w]lz + f4(A)]2z\z 2, (3-25)

AA) 2 JIIQraA) Ay 5 A Al + 1, (3.26)

f1().f2(+), f3(+) are defined in (3.23) angl}. , (A) in (3.22).

Proof: The proof is given in Appendix B.3.1.

In order to get a bound that depends only |anr — fir||2, ||33A\A||2, the noisew, and the sets

T, A, A, we can further bound. , (A) by rewritingy — Acr A (A) = A(z — erx(A)) + w and then

bounding||z — (¢7.x(A))]]2 using Lemma 9. Doing this gives the following corollary.
Corollary 4 If Qr,x(A) is invertible, ERCy A (A) > 0, andy = +5.,(A), then

|z — 22 < g(A) (3.27)
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where
9(Bd) & giller — prll2 + g2l|wll2 + gsllz p\ all2 + 94 (3.28)
. |A|f1( )maxco(A)
£ A\fa(A +1),
g1 J2(A)( ERCrA(B) )
|A|f1(A) f3(A)maxcofA) -
g2 = +f3(A)7
ERCTA( )
|Alf1(A) f1(A)maxcofA) -
g3 = + fa(A),
ERCrA(A)
a \A|||A(TUA)c w|oo f1(A)
= ERCrA(A) ’
maxcofA) £  max |A/Aruale,
1¢(TUA)e

f1().f2(), f3(-) and f4(-) are defined in (3.23) and (3.26), and , (A) in (3.22).

Proof: The proof is given in Appendix B.3.2.

Using the above corollary and minimizing over all allow&d, we get the following result.

Theorem 5 Let

A* 2 argming(A) (3.29)
Aeg
where
G2 {A:ACA ERCr\(A)>0,QrA(A) is invertible} (3.30)

If v = 7}7)\(&*), then
1. L(b) has a unique minimizet,, supported o¥" U A,

2. The error bound is

Iz — 2|2 < g(A¥) (3.31)
(VTA( ) is defined in (3.22)).

Proof: This result follows by minimizing over all allowed’s from Corollary 4.
Compare Theorem 5 with Theorem 4. Theorem 4 holds only when the corsptétdelongs tq7,

lways (we only need toy sgipropriately). Moreover, even whéndoes
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belong toG, Theorem 4 gives the error bound by choosikty= A. However, Theorem 5 minimizes
over all allowedA'’s, thus giving a tighter bound, especially for the case when the sufficterditions
of Theorem 4 just get satisfied a#tRC7 ,(A) is positive but very small. A similar comparison also
holds for the mod-BPDN and BPDN results.

The problem with Theorem 5 is that its bound is not computable (the computatimstas expo-

nential in| A[). Notice thaty(A*) := mingz ; g(A) can be rewritten as

A*) 2 ming(A) = mi in g(A) where
g(A") Amelgg() OgrgglnAlmg}cng()

Gr2GN{ACA:|Al=k} (3.32)

Let d := |A|. The minimization ovegy is expensive since it requires searching over(é)lsizek
subsets ofA to first find which ones belong 1@, and then find the minimum over al C G;. The
total computation cost to do the former for all séts G1,...Gg4 is O(ZZZO (Z)) = 0(29),i.e. itis

exponential ind. This makes the bound computation intractable for large problems.

3.5.1 Obtaining a Computable Bound

In most cases of practical interest, the term that has the maximum variabilitgiffezent sets in
G is ||xA\AH2. The multipliersg;, g2, g3 and gy vary very slightly for different sets in a give.
Using this fact, we can obtain the following upper bounchaing, g(A) which is only slightly looser
and also holds without sufficient conditions, but is computable in polynomial time

DefineA** (k) and By, as follows

A**(k) £ ar min T an &
() & arg  wmin losll

A*(k)) if A*(k)eg
B, & g(A™(k)) (k) € G (3.33)

o0 otherwise

Then, clearly
ming(A) < By (3.34)
k

sinceming, g(A) < g(A) foranyA € G, and itis also less than infinity. For aikythe setA** (k) can

—

www.manharaa.com




—

55

the indices of the: largest elements. Doing this tak€gd log d) time since sorting take®(d log d)
time. Computation of3; requires matrix multiplications and inversions which &rg:®). Thus, the
total cost of doing this is at mog?(d*) which is still polynomial ind.

Therefore, we get the following bound thatasmputable in polynomial time and that still holds

without sufficient conditions and is much tighter than Theorem 4
Theorem 6 Let

kmin = arg min B, and
0<k<IA|

A A2 A (ki) (3.35)
whereB;, and A** (k) are defined in (3.33). = ;. , (A™),
1. L(b) has a unique minimizet;, supported oi” U A**,

2. The error bound is

|z — &2 < g(A*) (3.36)

(v7.A(A) is defined in (3.22)).

Corollary 5 (corollaries for mod-BPDN and BPDN) The result for mod-BPDN follows by setting
A = 0in Theorem 6. The result for BPDN follows by setting= 0, 7' = () (and soA = N) in

Theorem 6.

Whenn ands = |N| are large enough, the above bound is either only slightly larger, or often
actually equal, to that of Theorem 5 (e.g. in Fig. 3.4(a)= 256, n = 0.13m = 33, s = 0.1m = 26).
The reason for the equality is that the minimizing valug:a$ the one that is small enough to ensure
thatgi, g2, g3, g4 are small. Wherk is small,g1, g2, g3, g1, ERC andQ(A) have very similar values
for all setsA of the same sizé. In (3.28), the only term with significant variability for different sets
of the same sizé is ”xA\AH2' Thus, (a)arg ming, g(A) = arg ming, H:UA\AHQ and (b)Gy, is equal
to {A C A,|A| = k}. Thus, (3.34) holds with equality and so the bounds from Theorems 6 amd 5 a
equal. Asn ands = |N| approach infinityjt is possible to use a law of large numbers (LLN) argument

vill be equal with high probability (w.h.phe key idea will be the same as
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above: show that as, s go to infinity, w.h.p. g1, g2, g3, g4, Q and ERC are equal for all setd of any

given sizek. We will develop this result in future work.

3.6 Numerical Experiments

In this section, we show both upper bound comparisons and actualsteection error compar-
isons. The upper bound comparison only tells us that the performancangees of reg-mod-BPDN
are better than those for the other methods. To actually demonstrate tmbdeBPDN outperforms
the others, we need to compare the actual reconstruction errors. €thanse organized as follows.
After giving the simulation model in 5.4.1, we show the reconstruction errmpewsisons for recov-
ering simulated sparse signals from random Gaussian measurements inrb%423, we show com-
parisons for recursive dynamic MRI reconstruction of a larynx imaggeiesece. In this comparison,
we also show the usefulness of the Theorem 6 in helping us select a gluedof~. In the last three
subsections, we show numerical comparisons of the results of the vérerems. The upper bound
comparisons of Theorem 6 and the comparison of the correspondimgsteaction errors suggests that
the bounds for reg-mod-BPDN and BPDN are tight under the scenatabisaed. Hence, they can be
used as a proxy to decide which algorithm to use when. We show this fordrodom Gaussian and

partial Fourier measurements.

3.6.1 Simulation Model

The notation: = +a means that we generate each element of the vedtatependently and each
is either+a or —a with probability 1/2. The notatiow ~ A/(0,3) means that is generated from a
Gaussian distribution with mean 0 and covariance maitiXVe use|a | to denote the largest integer
less than or equal te. Independent and identically distributed is abbreviated as iid. Also, N-RMS
refers to the normalized root mean squared error.

We use the recursive reconstruction application [33, 25] to motivate thdatioumodel. In this
case, assuming that slow support and slow signal value change hel&ifse 1.2], we can use the
reconstructed value of the signal at the previous timg aad its support a&'. To simulate the effect

of slow signal value change, we let; = uy + v wherev is a small iid Gaussian deviation and we let
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fraN = pran (@nd Sarran = firnN + vraN).

The extras setA, = T\ N, contains elements that got removed from the support at the current
time or at a few previous times (but so far did not get removed from theosstipptimate). In most
practical applications, only small valued elements at the previous time get eenfrem the support
and hence the magnitude ofon A, will be small. We use5, to denote this small magnitude, i.e. we
simulate(fi)a, = £0s.

The misses’ set at time A, definitely includes the elements that just got added to the support
at ¢ or the ones that previously got added but did not get detected into tip@rsigstimate so far.
The new elements typically get added at a small value and their value slowbages to a large one.
Thus, elements itk will either have small magnitude (corresponding to the current newly acickes),
or will have larger magnitude but still smaller than that of elements already in7. To simulate
this, we do the following. (a) We simulate the elementsMdm 7' to have large magnitude;;, i.e.
we let (u)nnr = £5;. (b) We split the sefA into two disjoint partsA; andAs = A\ A;. The
setA; contains the small (e.g. newly added) elements, (8, = +5;. The setA, contains the
larger elements, though still with magnitudes smaller than thodéinT', i.e. (u)a, = £5m, Where
Bi > B > Bs.

In summary, we use the following simulation model.

()v = (Wn+v, v~N(0,02I)
(@)ne = 0 (3.37)
where (/«L)NDT = :I:Bl
(#)AI = iﬁsv (/L)Az = iﬁm
(W)ve = 0 (3.38)
and
(W)ran = (WraN = £
(ﬂ)Ae = X0
()re = 0 (3.39)
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We generate the support of NV, of size| N|, uniformly at random fronil, ..., m]. We generateé\
with size|A| and A, with size|A.| uniformly at random fromV and fromN¢ respectively. The set
A, of size|A1| = [|A]/2] is generated uniformly at random frofh. The setAy, = A\ A;. We let
T =NUA.\ A. We generate. and thenz using (3.38) and (3.37). We generatesing (3.39).

In some simulations, we simulated the more difficult case whgre- ;. In this case, all elements

on A were identically generated and hence we did not n®ed

3.6.2 Reconstruction Error Comparisons

In Fig. 3.1, we compare the Monte Carlo average of the reconstruction @rreg-mod-BPDN
with that of mod-BPDN, BPDN, weighte [26] given in (1.9), CS-residual given in (1.11), CS-mod-
residual given in (3.7) and modified-CS-residual[40] given in (3.8nufation was done according
to the model specified above. We used random Gaussian measurementssimthagion, i.e. we
generatedd as ann x m matrix with iid zero mean Gaussian entries and normalized each column to
unit 5 norm.

We experimented with two choices of n = 0.13m (where reg-mod-BPDN outperforms mod-
BPDN) andn = 0.3m (where both are similar) and two valuesaﬁ, af) = 0.001 (good prior) and
o2 = 0.1 (bad prior). For the cases of Fig 3.1(@)# 0.13m, o, = 0.001) and Fig 3.1(b)¢ = 0.13m,
af) = 0.1), we used signal lengtlh = 256, support sizd N| = 0.1m = 26 and support extras size,
|A¢] = 0.1|N| = 3. The misses’ sizelA|, was varied between 0 artd2| N | (these numbers were
motivated by the medical imaging application, we used larger numbers thanavéhahown in Fig.
1.2). We used; = 1, 3,, = 0.4 and s = 0.2. The noise variance wag, = 10~°. For the last two
figures, Fig 3.1(c)¢ = 0.3m, o7 = 0.001) and Fig 3.1(d) ¢ = 0.3m, o3 = 0.1), for whichn was
larger, we used,,, = 85 = 0.25 which is a more difficult case for reg-mod-BPDN. For Fig. 3.1(c), we
also used a larger noise variancge = 104, All other parameters were the same.

In Fig. 3.2, we show a plot of reg-mod-BPDN and BPDN from Fig 3.1(ag¢mocted all the way to
|Al/|N| = 1 (which is the same a4 = N). Notice that if|{A.| = 0, then the pointA|/|N| = 1 of
reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But in this pbt| = 3 and hence the two

points are different, even though the errors are quite similar.
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For applications where some training data is availapbnd\ for reg-mod-BPDN can be chosen by
interpreting the reg-mod-BPDN solution as the maximum a posteriori (MAP) gstiomaler a certain
prior signal model (assumer is Gaussian with meaf; and variancefg andxre is independent of
zr and is iid Laplacian with parametay). This idea is explained in detail in [25]. However, there is
no easy way to do this for the other methods. Alternatively, choogiagd A according to Theorem
6 gives another good start point. We can do this for mod-BPDN and BBDiINye cannot do this for
the other methods (we show examples using this approach later). For edaic@emparison, for each
algorithm, we selected from a set of value§).00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1].
We tried all these values for a small number of simulations (10 simulations) angitieed the best
one (one with the smallest N-RMSE) for each algorithm. For weightedconstruction, we also pick
the besty in (1.9) from the same set in the same Walfor reg-mod-BPDN) should be larger when
the signal estimate is good and should be decreased when the signal estiroas®igood. We can use
A = ao}, /o2 to adaptively determine its value for different choicesrgfando>. In our simulations,
we usedv = 0.2 for Fig. 3.1 (a), (b) and (d) and = 0.05 for Fig. 3.1(c).

We fixed the chosen, v’ and) and did Monte Carlo averaging over 100 simulations. We conclude
the following. (1) When the signal estimate is not good (Fig. 3.1(b),(d)) lberw: is small (Fig.
3.1(a),(b)), CS-residual and CS-mod-residual have significantlgdangor than reg-mod-BPDN. (2)
In case of Fig. 3.1(d)«{ = 0.3m), they also have larger error than mod-BPDN. (3) In all four cases,
weighed/; and mod-BPDN have similar performance. This is also similar to that of reg®RiaN
in case ofn = 0.3m, but is much worse in case of = 0.13m. (4) We also show a comparison
with regmodBPDN-var in Fig. 3.1(a). Notice that it has larger errors tegrmod-BPDN for reasons

explained in the beginning of this chapter.

3.6.3 Dynamic MRI application using~ from Theorem 6

In Fig. 3.3, we show comparisons for simulated dynamic MR imaging of an detyaix image

sequence (Fig. 1.2 (a)(i)). The larynx image is not exactly sparse harlyscompressible in the

“To give an example, our finally selected numbers for Fig. 3.1(d) wene =
0.01,0.001,0.001,0.001,0.001,0.001,0.01,0.01 for BPDN, mod-BPDN, reg-mod-BPDN, weightefl, LS-CS, CS-
residual, CS-mod-residual, mod-CS-residual respectivelyyand 0.0001
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wavelet domain. We used a two-level Daubechies-4 2D discrete waastarm (DWT). Theéd9%-
energy support size of its wavelet transform vedtdi| ~ 0.07m. Also, |A;| ~ 0.001m and|A. | ~
0.002m. We used &2 x 32 block of this sequence and at each time and simulated undersampled MR,
i.e. we selected 2D discrete Fourier transform (DFT) coefficients using the variablsidesampling
scheme of [35], and added iid Gaussian noise with zero mean and vasigneel 0 to each of them.
Using a smalB2 x 32 block allows easy implementation using CVX (for full sized image sequences,
one needs specialized code). We usgd= 0.18m att = 0 andn = 0.06m att > 0.

We implemented dynamic reg-mod-BPDN as described in Algorithm 2. In thidemmlihe ma-
trix A = F,, - W~! whereF,, contains the selected rows of the 2D-DFT matrix &Fds the inverse
2D-DWT matrix (for a two-level Daubechies-4 wavelet). Reg-mod-BPDa&$ wompared with sim-
ilarly implemented reg-mod-BPDN-var and CS-residual algorithms (CSuakmhly solved simple
BPDN att = 0). We also compared with simple BPDN (BPDN done for each frame sep3grately
For reg-mod-BPDN and reg-mod-BPDN-var, the support estimationhblgs, was chosen as sug-
gested in [25]: we used = 20 which is slightly larger than the smallest magnitude element in the
99%-energy support which is5. At t = 0, we usedl| to be the set of indices of the wavelet approx-
imation coefficients. To chooseand A we tried two different things. (a) We usedand~ from the
set[0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1] to do the reconstruction for a short train-
ing sequence (5 frames), and used the average error to pick tha besty. We call the resulting
reconstruction error plot reg-mod-BPDN-opt. (b) We computed theageeof they* obtained from
Theorem 6 for the 5-frame training sequence and used thjsfasthe test sequence. We selected
from the above set by choosing the one that minimizes the average of thd bbliheorem 6 for the
5 frames. We call the resulting error plot reg-mod-BPBN-The same two things were also done for
BPDN and CS-residual as well. For reg-mod-BPDN-var, we only did (a)

From Fig. 3.3, we can conclude the following. (1) Reg-mod-BPDN sigmifigaoutperforms the
other methods when using so few measurements. (2) Reg-mod-BPDM&/aegmod-BPDN have
similar performance in this case. (3) The reconstruction performanegehod-BPDN using* from
Theorem 6 is close to that of reg-mod-BPDN using the hesgtosen from a large set. This indicates

that Theorem 6 provides a good way to seteat practice.
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3.6.4 Comparing the result of Theorem 4

In Table 3.1, we compare the result of Theorem 4 for reg-mod-BPDN;BRIAN and BPDN. We
usedm = 256, |N| = 26 = 0.1m, |A| = 0.04|N| = |A.|, 02 = 1073, ; = L and3,, = B, = 0.25.
Also, 02, = 10~° and we variech. For each experiment with a given we did the following. We
did 100 Monte Carlo simulations. Each time, we evaluated the sufficient conditions dopdabnd
of reg-mod-BPDN to hold. We say the bouhdldsif all the sufficient conditions hold for at least

98 realizations. If this did not happen, we recordt holdin Table 3.1. If this did happen, then we

E[bound]
E[[[z]l3]

which the sufficient conditions do hold. Here, “bound” refers to thetrigind side of (3.23) computed

recorde

whereE[-] denotes the Monte Carlo average computed over those realizations for

with v = 7},A(A) given in (3.22). An analogous procedure was followed for both moBHBRnNd
BPDN.

The comparisons are summarized in Table 3.1. For reg-mod-BPDN, weeselefrom the set
[0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.1] by picking the one that gave the smallest bound.
Clearly the reg-mod-BPDN result holds with the smallesivhile the BPDN result needs a very large

n (n > 90%). Also even withn = 90%, the BPDN error bound is very large.

n Reg-mod-BPDN| Mod-BPDN | BPDN
0.13m 0.885 not hold | not hold
0.19m 0.161 0.303 not hold
0.5m 0.0199 0.0199 not hold
0.9m 0.014 0.014 0.27

Table 3.1 Sufficient conditions and normalized bounds comparison ahoel-
-BPDN, mod-BPDN and BPDN. Signal length = 256, support
size|N| = 0.1m, |A| = 4%|N|, |A.| = 4%|N]|, 02, = 1075 and
ag = 1072, “not hold” means the one or all of the sufficient conditions
does not hold.

3.6.5 Comparing Theorems 4,5, 6

bound
llz]l2

N| =26, |Ac| = 0.1|N], 07 = 1073,

In Fig. 3.4 (a), we compare the results from Theorems 4, 5 and 6 forion#egion. We plot

for |A]/|N| ranging from O to 0.2. Also, we used = 256,
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B = 1andB, = Bs = 0.25. Also,n = 0.13m ando? = 107°. We usedy = ~* given in the
respective theorems, and we set 10030/012,. We notice the following. (1) The bound of Theorem 4
is much larger than that of Theorem 5 or 6, even|idf = 0.04|N|. (2) For larger values dfA|, the
sufficient conditions of Theorem 4 do not hold and hence it does mvige a bound at all. (3) For
reasons explained in Chapter 3.3, in this case, the bound of Theoreng@aiste that of Theorem 5.
Recall that the computational complexity of the bound from Theorem 5 isrexii@l in|A|. However

if |A]is small, e.g. in our simulationg\| < 5, this is still doable.

3.6.6 Upper bound comparisons using Theorem 6

In Fig. 3.4(b), we do two things. (1) We compare the reconstruction eoonds from Theorem
6 for reg-mod-BPDN, mod-BPDN and BPDN and compare them with the ®tordLS-CS error
given in [60, Corollary 1]. All bounds hold without any sufficient caiwhs which is what makes this
comparison possible. (2) We also use tffegiven by Theorem 6 to obtain the reconstructions and
compute the Monte Carlo averaged N-RMSE. Comparing this with the Monte @eglaged upper

bound on the N-RMS E%Tmﬁ] , allows us to evaluate the tightness of a bound. Higredenotes the
2

mean computed over 100 Monte Carlo simulations and “bound” refers to thiehagd side of (3.36).
We usedn = 256, [N| = 26, |Ac| = 0.1|N], 07 = 1073, 5; = 1, B = Bs = 0.25, and|A| was
varied from 0 t00.2| N|. Also,n = 0.13m ando? = 107°.

From the figure, we can observe the following. (1) Reg-mod-BPDN hahsnaller bounds than
those of mod-BPDN, BPDN and LS-CS. The differences between regBRDN and mod-BPDN
bounds is minor whefA| is small but increases &A| increases. (2) The conclusions from the recon-
struction error comparisons are similar to those seen from the bound deomzrindicating that the
bound can serve as a useful proxy to decide which algorithm to use (mb&oe bound computation
is much faster than computing the reconstruction error). (3) Also, regBRigN and mod-BPDN
bounds are quite tight as compared to the LS-CS bound. BPDN boundrande bothl 00%. 100%
error is seen because the reconstruction is the all zeros’ vector.

In Fig. 3.4(c), we did a similar set of experiments for the case wHeterresponds to a simulated

MRI experiment, i.eA = F, - W~! whereF, contains randomly selected rows of the 2D-DFT matrix
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andWV is the inverse 2D-DWT matrix (for a two-level Daubechies-4 wavelet). Bé&du = 0.17m
ando? = 1073. All other parameters were the same as in Fig. 3.4(b). Our conclusiorasarthe
same.

The complexity for Theorem 6 is polynomial i | whereas that of the LS-CS bound [60, Corollary
1] is exponential iNA|. To also show comparison with the LS-CS bound, we had to choose a small
value ofm = 256 so that the maximum value ¢fA| = 0.2|N| = 5 was small enough. In terms
of MATLAB time, computation of the Theorem 6 bound for reg-mod-BPDN tOdk seconds while
computing the LS-CS bound took 1.2 seconds. For all methods excep8&l 8&€were able to do the
same thing fairly quickly even fom = 4096, or even larger. It took onlg seconds to compute the

bound of Theorem 6 whem = 4096, n = 0.13m, |[N| = 410 = 0.1m and|A| = |A.| = 0.1|N| =

41.
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Figure 3.1 The N-RMSE for reg-mod-BPDN, mod-BPDN, BPDN, LS-CS,
KF-CS, weighted;, CS-residual, CS-mod-residual and modified-C-
S-residual are plotted. Fer = 0.13m , reg-mod-BPDN has smaller
errors than those of mod-BPDN and the gap is larger when the sig-
nal estimate is good. Fotr = 0.3m, the errors of reg-mod-BPDN,
mod-BPDN and weighted, are close and all small.

www.manharaa.com




65

n=013m 0>= 10" and 0§: 1073 N|=26

BPDN
modBPDN
regmodBPDN

N-RMSE

‘egmodBPDN-var|
weighted 11

0.6 . 1
JAV/IN]

Figure 3.2 Plot of Fig 3.1(a) extended all the wayAd/|N| = 1 (which is the
same as\ = N). Notice that if|A.| = 0, then the pointA|/|N| =1
of reg-mod-BPDN (or of mod-BPDN) is the same as BPDN. But in

our plot,|A.| = 3 and hence the two points are different, even though
the errors are quite similar.
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Figure 3.3 Reconstructing3 x 32 block of the actual (compressible) larynx se-
quence from partial Fourier measurements. Measuremests.18m

fort = 0 andn = 0.06m for ¢ > 0. Reg-mod-BPDN has the smallest
reconstruction error among all methods.
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Figure 3.4 In (a), we compare the three bounds from Theorem 4, 5 torcbéie
realization ofz. In (b) and (c), we compare the normalized average
bounds from Theorem 6 and reconstruction errors with random Gaus-
sian and partial Fourier measurements respectively.
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CHAPTER 4. Modified-CS-residual for Recursive Reconstructionof Highly

Undersampled Functional MRI Sequences

In previous four chapters, we have discussed algorithms and andlheerlact recovery conditions
or bounded the reconstruction errors. In this chapter, we study tHeapm of modified-CS based
approaches for blood oxygenation level dependent (BOLD) cdrfurastional MR imaging (fMRI).

In particular, we show, via exhaustive experiments on actual MR scatata for brain fMRI, that
our recently proposed approach for recursive reconstructiopaste signal sequences, modified-CS-
residual, outperforms other existing CS based approaches. ModiBe@gidual exploits the fact that
the sparsity pattern of brain fMRI sequences and their signal valuegelsiowly over time. It provides

a fast, yet accurate, reconstruction approach that is able to accuratkythe changes of the active
pixels, while using only about 30% measurements per frame. Significantly wegbneerformance
over existing work is shown in terms of practically relevant metrics suchtageagxel time courses,
activation maps and receiver operating characteristic (ROC) curves.

In BOLD contrast fMRI, a time-series df;-weighted images are collected as the subject is pre-
sented a controlled stimulus. To achieve whole-brain coverage fMRI isaifypiserformed at a low
spatial (e.9.3 x 3 x 3 mm? voxels) and temporal (e.g., volume repetition time2of 3 seconds)
resolution. This provides a sufficient signal-to-noise ratio for robestation of BOLD contrast by
statistical testing. However, if CS based approaches can be applied tatfimBy ultimately enable
higher spatial and temporal resolution functional brain imaging, which patlmprovides a new view
of human brain function [61].

The application of CS to MRI was first developed in detail in [35]. The mvatghtforward appli-
cation of CS to fMRI images reconstruction would be to perform CS on dimehod data independently

(simple-CS). For time sequences, batch-CS [36] improves simple-CS by jootipstructing the en-
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Figure 4.1 Slow support change plots for a simulated brain fMRI sequglece
tails are given in Chapter 4.3)V; refers to thed9% energy support
of the two-level Daubechies-4 2D discrete wavelet transform (DWT)
of the image at time. |N;| ~ 0.05m. We the plot support changes,
additions and deletions, with respect to the previous frame

tire sequence by treating it as a 3D sparse signal. Because it usdsysdacsalong the time axis, it
is able to achieve accurate reconstructions using much fewer measure¢naenssmple-CS. But the
reconstruction can only be performed on the ertimichof data after all sampling is completed. Also,
for ani-frame acquisition, its computational complexity is rougkiytimes that of simple-CS, while
its memory requirement istimes that of simple-CS. In recent work, [37, 38] proposed Kt-FOCUSS,
which uses the fact that a sequence of MR image data is sparsezjn-thfedomain wheref denotes
temporal frequency. The key idea is to reconstiict— ¢ “frames” using FOCUSS[39] wherkY
denotes the phase encoding direction (y-axis of the 2D discrete Foamsfdarm (DFT) plane). Kit-
FOCUSS is still a batch method, which means it is still (a) non-causal, i.e. isrieedait to acquire
the entirel frame sequence before doing the reconstruction (or one needsuo itafr a batch fashion
again at each time which is slow), and (b) its memory requirement i¢ 8tiles that of simple-CS. But
its reconstruction is fast because it is done on krie— ¢ “frame” at a time and because often it only
runs a a few iterations of FOCUSS starting from previous “frame” as initiakg. The same memory
and non-causality issues also remain with Kt-FOCUSS with motion compensation[@V]. More-

over, as we demonstrate in our experiments, for the fMRI based BOLDastretection application
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that we study here, its performance is, in fact, slightly worse than ouropezprecursive approach
(modified-CS-residual) because of its assumption of Fourier sparsitg &hentime axis — it tries to
recover the sparsest sum of sinusoids to represent the time seqaeaagvien pixel.

In recent work, we studied the problem of recursively reconstru@itime sequence of (approxi-
mately) sparse signals from highly undersampled measurements andqafdywossets of approaches
— LS-CS and KF-CS [33] and later maodified-CS and modified-CS-res[@6a0]. By “recursive”,
we mean that we use only the previous reconstruction and the currentinee@&snts’ vector to re-
cover the current signal. As a result, these are (a) causal appgaeh they can recover the current
frame as soon as its MR data gets acquired; and (b) they have the sange ¢esmory) and com-
putational complexity as that of simple-CS (and hence much lower than thatdf methods), but
they can achieve significantly lower reconstruction errors than simple{@® whe available number
of measurements is too few for simple-CS.

In all the above works, we have done experiments only on either fully sintudta or simulated
MRI data, i.e. real medical image sequences, but random-sampled MRI imt&chby taking the 2D
discrete Fourier transform (DFT) of the image and randomly sampling it. &ere only the mean
squared error (MSE) has been used as the performance evaluation. nBett we know that when
using actual MR scanner data, (a) there are multiple sources of noisa@ieling error so that the
resulting 2D-DFT of the image is no longer conjugate symmetric (its inverse DR®tifully real);
and (b) randomly sampling the 2D-DFT plane is not a practical scanningagp In practice, one
can only random sample in one direction e.g. one can only random samg@reelumns of the 2D-
DFT plane. (c) Moreover, it is well known to the image processing and rakidi@ging communities
that MSE over the entire image is not a useful performance metric sincestraeapture errors in
individual pixels very well. But often errors in even a few pixels can biegproblematic, e.g. they
can indicate incorrect active regions.

In this chapter, we perform a detailed experimental evaluation of modifiece§i8ual for

1. areal functional MRI application (that of detecting the active regionerbifain as a stimulus is

provided to the subject);

2z withsactualMRsseanner data that is acquired in a practically sensiblefe@andomly sample
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the ky axis); and

3. using practically relevant performance metrics — activation maps aetyeeoperating charac-

teristic (ROC) curves.

Modified-CS relies on a key assumption that the sparsity pattern (sugr@orge in the sparsity basis)
changes slowly with time for most practical image sequences. We demonstsaterthrain fMRI
sequences in Fig. 4.1. Notice that the maximum support change is lesgthafrthe support size in
most cases and in the worst case it is less lt&h. Denote the support estimate from the previous time
by T'. The key idea of modified-CS is to find the solution that is sparsest outsiflewiile satisfying
the data constraint.

Some other related approaches include Dynamic-LASSO [62] which issaldawt batch approach
(with very high computational and storage cost) and it assumes that treitgpattern of the image
sequencaloes notchange with time; or [48] which recovers the difference image by doing €S o
the measurement differences(CS-diff). Both CS-diff and our earlggkwn LS-CS and KF-CS have
already been demonstrated to have worse performance than modifi&bC®]. Approaches related

to modified-CS for a static problem but with partial support knowledge irc|@d, 26].

4.1 Problem Formulation

We formulate the problem for a single slice of fMRI acquired over time.(Lgt,,, x.», denote the

image at timg and letm := m? be its dimension. The full sampling measurement model is
Yiuie = St + Zy (4.1)

whereYy,;; ; is the measured k-space data at time5; is the ideal k-space data auff is the mea-
surement noise, which is modeled as a complex Gaussian noise. The imagsneted from the full

Fourier samplesl;, can be rewritten as
Iy = F/qull,tF/ = Itrue,t + (42)

whereF' is the DFT matrix andy,.. . is the ideal image reconstructed from noise-free k-space data.

ne=nk-"Zel5isithedegrading noise in image domain, which is complex and zero mean Gawughian
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variancea%. We further model the complex imadgas follows. Each pixel is made up of the baseline
MR signal, the functional signal of interest, nuissance signals[63]ttendegrading noise signal. Then
we model a slice in an fMRI time-sequence as [64].

1i(i, ) = Ly (i, 3) + va(i, §) + (i, ) - be(d, 5) + e, 5) (4.3)
Here,i, j are the pixel indices with, j € {1,...,m}. I, is the baseline MR signal which does not
change over timeh, (4, j) denotes the unit-amplitude BOLD signal shape in pixgf), the exact form
of which depends on the hemodynamic response function (HDR) comdsm to the pixel.a(i, 5)
is the non-negative amplitude of the BOLD signal in pigglj) that will be equal to zero in inactive
pixels. v; is the nuissance signal, which are modeled only for completeness since e faithfully
reconstruct; from highly undersampled data. From these definitions, the contrastide-ramio (CNR)
of the BOLD signal in each pixel can be expressed'a8R(i, j) = %lj) MR images, especially MR
brain images are known to be compressible in the wavelet transform do®girtfgnce, we set up
the measurement model of CS as follows. Kgtdenote the 2D discrete wavelet transform (DWT) of
the image representation from ideal k-space, Xg.:= Wl W', whereW is the DWT matrix.
ThenYyuu = FW' X:WF + Z,. We capture a smaller number,< m, of Fourier coefficients of the
images. Since we only sample in KY direction, this can be modeled by applyiﬁrg anm, sampling
mask,M,p (which contains a singlé at a different location in each row and all other entries are zero)
to Y.+ to obtain the measuremenitsi.e. Y; = Mop Yy = Mop(FW' X,WF + Z;). The above
can also be transformed to a 1D problem by using Kronecker produtbietby). Letyru; =
vec(Yrune), ot := vec(Xy) andz; := vec(Z;). Here,vec(X;) denotes the vectorization of the matrix
X, formed by stacking the columns &, into a single column vector. Theyy,;: = FipWipx: + 2
whereFip = FQF, Wi, =W QW'. Ann x m maskMp = Idy,, Q Map is applied toy,; ¢
to undersample the Fourier coefficients to obtginvhereld,,, is anm; x m; identity matrix. The
above can be rewritten as

yr = Axy + 24, where A .= HO, (4.4)

whereH := M, pFip and® := W/ ,. For our algorithm, we requird be satisfyingS = (|7 +2|A|)

RIP property[18].
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Our final goal is to detect the active pixels’ region from the reconstrusxtgdence, i.e. detect the

region where, (i, j) > 0.

4.2 Modified-CS-residual

BPDNTJ1] is the most commonly used method in noisy CS. Modified-BPDN[28} tigefind the
signal sparsest outside of the getvhile satisfying the data constraint. For signal sequences with slow
changing support, we can u§e = N,_;. When the measurements are few(smaller than what CS
needs), modified-BPDN is known to have much smaller reconstructionteeithat of CS(as long as
|A] and|A.| are small) [28].

Furthermore, by using this fact that signal/image also changes slowly overviemean apply
modified-BPDN on the observation residual computed using the previousl gigtimate (or using the

first signal estimate), i.e. we can solve
arg mbin lyr — Azt temp — AbH% + v||bre 1 (4.5)
With Z¢ temp = Z1—1 OF T4 temp = 1. The reconstructed signa) is then given by
i =b+ Tt temp (4.6)

We refer the above as modified-CS-residuak: I small andy is not large enough, modified-BPDN
will not have a unique minimizer. Modified-CS-residual in (4.5) ensuresttigachosen minimizer is
the one closest tG; ;cmp. Assuming thati; .., is a good initial estimate aof;, this would be the
correct one. In our experiments, we used..,, = <1, the baseline signal at the first frame. The entire

algorithm is summarized in Algorithm 3.

4.3 Experimental Results

In this section, we show experiments on real fMRI sequences. We é&vahe performance of
detection using ‘activation map’, ‘Receiver operating characteristiQR@nd 'time course’. Two-
level Daubechies-4 2D discrete wavelet transform(DWT) is used agtsifying basis.V; refers

to the 99% energy support of the wavelet coefficients of each frame. Variabisityeundersampling
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Algorithm 3 Modified-CS-residual
Initialization: Do inverse DFT for:; and setN; = {k : |(i1)x| > 7}. Fort > 0, do,

1. Modified-CS-residual

(a) Set%t,temp — 3A31-
(b) Do Modified-CS-residual. Computeh = arg miny, ||y; — At temp — Ab||3 +7H(b)NE_1 I|1-

(c) Compute the support. Seti; = & semp + b and computeV; = {k : | ()| > 7}.

2. Output N, andZ;. Increment and go to step 1.

ROC Curves for CNR = 4

o
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Figure 4.2 Comparing modified-CS-residual, Kt-FOCUSS with different 4tera
tions and ME/MC, BPDN, CS-residual,and Batch CS with full sam-
pling. At¢t = 1, n = 100%m measurements are used. For 1,
n = 0.3m measurements are used.

scheme(which samples from a distribution that has more weight on the louefneigs) [35] is used
in our experiments. The sampling masiyp, is varying for eacht. In our experiments, the recon-
struction of the whole sequences takieseconds for all BPDN, modified-CS-residual, CS-residual,

Kt-FOCUSS with 2 iterations.

4.3.1 Real Brain Sequence(Simulated Activation)

To quantify detection performance using ROC curves, we need to knogrdled truth for active
regions. Hence in the first experiment, we captured a rest brain ssgj(teain fMRI when no stimulus

) using a real MR scanner, but we addedtihatian later in software.

—
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Rest fMRI (TR/TE= 2500/24.3 ms,90 degree flip angle3 mm slick thickness22 cm FOV,64 x 64
matrix, 90 volumes) was performed using3d” whole-body MR scanner and a gradient-echo echo-
planar imaging(EPI) acquisition sequence. We added synthetic BOLDasomtran average CNR of
4 to pixels corresponding to motor activation on one slice. The< 64 slice image hag3 active
pixels. The BOLD signal was created by convolving a bi-Gamma HDR mddsldgnset delay-s
FWHM) with binary-valued function representing a block stimulgg ¢ active,30 s rest; start/end
in rest condition). 10 separate observations were generated by resampling with the wavesirapp
technique[65] the original rest fMRI data and adding activation to theagpjate pixels to compute
descriptive statistics and compute meaningful performance curves.

We compare modified-CS-residual, Kt-FOCUSS, BPDN, batch-CS, €i8ua with IDFT using
full sampling. CS-residual, an improved version of CS-diff, refers tiomglPDN on the observation
residual computed using the first reconstructed frame. Fig. 4.2 shoiR@ecurves of all methods.
From the figure, it is clear that modified-CS-residual has the bestrpaafice since the its ROC curve
is strictly higher than those of other methods and closest to full sampling. Wetdshow N-RMSE
plot since it can not show the detection performance. But modified-€i8ua has similar N-RMSE as
those of Kt-FOCUSS and CS-residual and they are much smaller than ottierdsieFor Kt-FOCUSS,
increasing the number of iterations will not help improve the detection perfareeven if it can reduce
N-RMSE. With more iterations, the temporal DC component of Kt-FOCUSSwstnaction becomes
better while many other nonzero frequency components are eliminatede Heaceconstructed signal
is more 'flat’ with more iterations which worsens the detection for active pixeisdrluces N-RMSE.
Similarly, Kt-FOCUSS with ME/MC also has smaller N-RMSE but worse detectiofopaance. CS-
residual does not use the slow support change, therefore it ha wetection than modified-CS-
residual.

Time courses for one active pixel are shown in Fig. 4.3. It is also obdetivat modified-CS-
residual does best to track the time course of true(fully sampled) signalptiowiding good recon-

struction and detection.
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X=39,Y=43

4000 ‘ ‘ —modCSres

—Full Sampling
3800 —ktFOCUSS 2 Iterations

—BPDN

—ktFOCUSS 10 Iterations|
3600 —CS-Residual

—Batch CS
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Figure 4.3 Time courses of one active pixel.

4.3.2 Real Brain Sequence(Real Activation)

For real data sequences, we cannot use ROC curves to comparerftivenpaces of different
methods since no ground truth is available. Our comparison is based onéndetdtted activation can
approximate the activation of IDFT using full Fourier samples. Activationsrfapa given threshold
in t-test are used to study the detected activation. Different from the sirdidatpience, the activations
of the real data are not so ideal. For active brain imaging, we used theesggreemental setup as the
one in 4.3.1 except using = 0.33m measurements far > 1. The activation maps are shown in
Fig. 4.4 for the reconstructions using modified-CS-residual, Kt-FOCU®BISB&#DN compared with
full sampling when threshold for t-test is set the same for all algorithms. TdrdeBroni-corrected
threshold is chosen &s computed from the dataset. We easily observe that modified-CS-residual

has most active pixels detected and few false detection while both Kt-FO@W&B8PDN has many

missing detection.
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(a) Full sampling (b) Modified-CS-residual

(c) Kt-FOCUSS (d) BPDN

Figure 4.4 Comparing activation maps for modified-CS-residual, Kt-FOGCUSS
and BPDN with full sampling for each reconstruction. We can see
modified-CS-residual has the closest detected regions to full sampling.
Modified-CS-residual only has 1 missing active pixel and 5 false ones
while Kt-FOCUSS has 4 missing and 11 false ones. BPDN has 7 miss-
ing active pixels and 2 false ones.
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CHAPTER 5. Conclusions and Future Directions

In this work we studied the problem of sparse reconstruction from ngselenoisy undersampled
measurements when partial and partly erroneous, knowledge of théssgmgport and an erroneous
estimate of the signal values on the “partly known support” is also availabknote the support
knowledge byT" and the signal value estimate @nby jir. We proposed and studied the solutions
modified-CS and regularized modified-BP for noiseless measurementdl as wmdified-BPDN and
regularized modified-BPDN for noisy measurements.

Modified-CS for noiseless measurements solves aalaxation of the following problem: find the
signal that is sparsest outsideloind that satisfies the data constraint. We derived sufficient conditions
for exact reconstruction using mod-CS. These are much weaker thenfthraCS when the sizes of the
unknown part of the support and of errors in the known part are ssoaipared to the support size.
Simulation results showing greatly improved performance of mod-CS usingdnodlom Gaussian and
partial Fourier measurements are shown on both sparse and comprsiggible and image sequences.
An important extension of mod-CS, Regularized modified-BP, was dewtbpéalso uses prior signal
estimate knowledge. We obtained the exact reconstruction conditionggfonad-BP and argued that
if some of the inequality constraints are active and if even a subset of thed aetive constraints
satisfies certain conditions, then reg-mod-BP achieves exact recondey weaker conditions than
what mod-CS needs. A practical situation where this would happen is witarthe signal and its
estimate are quantized. In other cases, the conditions are only as weakashmod-CS. In either
case they are much weaker than those for BP as lofigisia good support estimate. We also provided
the reconstruction error bound when the exact recovery can npehagsimilarly, the error bound is
smaller or at least as large as that for mod-CS. From simulations, we sewénawithout any active

constraints, the reg-mod-BP reconstruction error is much lower thanfthaad CS.
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We also proposed a modification of the BPDN idea, modified-BPDN, forsspaconstruction
from noisy measurements when a part of the support is known, andleduts reconstruction error.
A key feature of our work is that the bounds that we obtain are computétg#ace, we used Monte
Carlo to show that the average value of the bound increases as thenmkopport size or the size
of the error in the known support increases and mod-BPDN requirakexeonditions than BPDN
needs. Also, Regularized Modified-BPDN, the extension of mod-BPDa&$, proposed when signal
estimate is also available. We bounded its reconstruction error and intcbtheéghtest bounds for
regularized modified-BPDN and modified-BPDN. We showed how to obtaipatable error bounds
that hold without any sufficient conditions. This made it easy to comparaedsofor the various
approaches (corresponding results for mod-BPDN and BPDN folloglirast corollaries). Empirical
error comparisons with these and many other existing approaches apea@imted.

In this work, we also studied the problem of recursively and causallynstoucting a sequence
of fMRI sequences from a reduced number of Fourier measuremenésdewionstrated improved
reconstruction and activation pattern detection performance of oungedpsolution, modified-CS-
residual on the real fMRI sequences, compared to existing work.

In ongoing work, we want to evaluate the utility of reg-mod-BPDN for reour functional MR
imaging to detect brain activation patterns in response to stimuli [66]. On tlee ettd, we are also
working on obtaining conditions under which it will remain “stable” (its erral \we bounded by a
time-invariant and small value) for a recursive recovery problem. 9, [fhis has been done for the
constrained version of reg-mod-BPDN. That result uses the restigdatetry constants (RIC) and
the restricted orthogonality constants (ROC) [18, 19] in its sufficient itimnd and bounds. However,
this means that the conditions and bounds are not computable. Also, sirataliifity holds under a
different set of sufficient conditions and has a different erromodhan that for mod-CS [67] or LS-CS
[33] or CS [19], comparison of the various results is difficult. An opeagjion is how to extend the
results of the current work (which are computable) to show the stability cbnstrained reg-mod-
BPDN. In future, we also want to do joint real-time detection and recortgtruto further improve

performance. Also, higher spatial and temporal resolution sequernites wxperimented.
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APPENDIX A. Appendix for the Proof of Exact Reconstruction Conditions of
Regularized Modified-BP

Recall thatt = |T|, u = |A|, e = |A.| ands = |N]|.

A.1 Proof of Proposition 1

The proof follows by contradiction. Suppose that we can find two diffieselutionsh; andb, that
satisfyy = Ab; = Aby and have the sam& norm,u, along7*. Thusb; is nonzero alond” (or a
subset of it) and some sat; of sizeu while b5 is nonzero alond” (or a subset of it) and some s&t
also of sizeu. The setsA; andAs may or may not overlap. Thud(b; — b2) = 0. Since(b; — ba) is
supported oY’ U A1 U Ay, this is equivalent todrya,un, (b1 — b2)rua,ua, = 0. Butif dx10, < 1,
Arua,un, is full rank and so the only way this can happen i&if- b = 0, i.eb; = bs.

Therefore there can be only one solution wigmormw along7 that satisfies that data constraint.

Sincez is one such solution, any other solution has to be equal to

A.2 Proof of Lemma 1

Denote a minimizer of (2.14) by. Sincey = Az andx satisfies (2.10)z is feasible for (2.14).

Thus,

[o7el1 < [Jorer = [Jzallr- (A1)
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Next, we use the conditions angiven in Lemma 1 and the fact thatis supported oV C 7T'U A to

show that]|bre<||1 > ||z7<|1 and hencé|xre||1 = ||bre|/1. Notice that

lorelln = D lag+bj—ajl+ D bl =D Jay by —ayl+ Y w Al (A-2)

JEA JETUA JEA JjE¢TUA
> Z sgn(z;) (x5 + (bj — x;)) + Z w'Aj(bj — ;) (A3)
JEA jETUA
= ||xAH1+Zw (b; — xj) = ||lzalls + w'(Ab — Az) — Zw i(bj — ;) (A.4)
J¢r JET
= lzalh =D w'Aj(b; — iy + f1 — ) (A.5)
jer
= llzali = Y w'A;(b — iy —p) = Y w'Ai(b; — i + p) (A.6)
JETa+ J€ETa-
> |zl = [lazelh (A7)

In the above, the inequality in (A.2) follows becaused; < |w'A;| < 1forj ¢ T'U A and because
|bj| > b;. Inequality (A.3) uses the fact that| > sgn(b)z for any two scalars andb and thatz; = 0
for j ¢ TUA. In (A.4), the first equality uses sgn;)z; = |z;| andw'A; = sgn(z;) for j € A.
The second equality just rewrites the second term in a different formA.B),(we use the fact that
Ab = Az = y (since bothb and z are feasible) to eliminate’(Ab — Ax). Equation (A.6) uses
w'A; = 0for j € Tjn and the definitions df’z+ and T, given in (2.15). Finally, (A.7) follows because
= Yjer,. WAj(bj = i — p) = Xjeq, w'Aj(bj — fi; + p) = 0. This holds since-p < b; — f1; < p
forall j € T; w'A; > 0for j € Tay; andw'A; < 0for j € Ta..

Both inequalities (A.1) and (A.2)-(A.7) can hold only whghy<||; = ||z7<||1, i.e. all the inequali-
ties in (A.2)-(A.7) hold with equality. Consider the inequality in (A.2). Sifwéd ;| < 1forj ¢ TUA,
this holds with equality only ib; = 0 for all j ¢ T"U A. SinceAb = y = Ax and since botlh andx
are supported o' U A (or on its subset)Ar A (brua — z7ua) = 0. Sincedy, < 1, Apua has full
rank. Therefore, this means that o = 7. Thus, we can conclude that= z, i.e.,z is the unique

minimizer.

A.3 Proof of Lemma 2

This proof uses the following simple facts. L&kin(M), Amax(M) denote the minimum and

matrd{ . (i) For positive semi-definite matrices/, Q, | M| = Amax(M);

—
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IMQ| < [|M||||@Q]l; Amin(M — Q) > Amin(M) — Amax(Q); and for a positive definite matrix\/,
|M~|| = 1/Amin(M); (ii) for any matrices,B, C, |B — C| < ||B]| + ||C]|; (iii) for disjoint sets
Ty, Ty, || A1y Ay || < 0y1y), i1, [25, equation (3)]; (VL — 07y < Amin (A7, A7y ) < Amax (A Apy) <
1+ 0y, [18]; (v) M (T3) is a projection matrix and s/ (T,) M (Ty) = M(T,) and||M(Ty)|| = 1;
(vi) Isgn(za)ll2 = V.

The lemma assumes thé + 6y, + sz < 1. This implies that (a)p, < 1 and soAx’Ax
is positive definite and se < n; (b) dx, < 1 and soAp,’Ar, is positive definite andV/(73) is
well-defined; and (c) as we show nexta’ M (T},)Ax is positive definite and hence full rank. Since
AN M(Ty)An = Ax'An — AN Ar, (A1, Ar,) "L Aq, Aa is a difference of two positive semi-definite

matrices, thus,

2
ekb,u

)\min(AA/M(Tb)AA) Z )\min(AA/AA) - )\max(AA/ATb (ATb/ATb)_lATb/AA) Z (1 - 5u> - ﬁ
b

>0 (A.8)

Thus,AA" M (Ty,) A is positive definite. The first inequality in (A.8) follows from fact (i). Thecend

one follows becauskyin (Aa’An) > (1-6,) (using fact (ivV));\max (Aa AT, (A1, A1) LA AA) =

|AA" Ay (A Ag,) ) T Ag) An || < [JAA"Agy || [|[(Ag,Ag,) 7 || Az, Aa || (using fact (0));]| Aa"Ax || =
| A1, Aall < Ok, . (using fact (iii)); and||(Ar,Ar,) 7| = Amm(AlTb’ATb) < 1_1% (sinceAq, A, is

positive definite, this follows using fact (i) and fact (iv)). The third inafity of (A.8) follows because

02 W 1=8u—0k, +0udk, 07 . .
(1—06y) — lf’gk = li_(s; bt > (. Both the numerator and the denominator are positive
b °b

because we have assumed that- oy, + 07, < 1.

Using fact (v),Ap' M (Ty) Ap = AA' M (T,) M (Ty)' Aa. Thus, using the abovel A" M (T,) M (Ty,) A
is positive definite and hence has full ramkThus, theu x n fat matrix, Ax" M (T}) has full ranku.

To prove the lemma, we first try to constructiar 1 vector,w, that satisfies the first two conditions
of the lemma. Then, we show that we can find an exceptionalb’ st that the constructed and £/
satisfy all the required conditions. Any that satisfiesA7;,’«w = 0 lies in the null space ofir,’
and hence is of the formv = M (7})v. To satisfy the second condition, we need ¢éhat satisfies
AA'M(Ty)y = sgnza). As shown aboveda’ M (Ty) is full rank and so this system of equations has

a solution (in fact has infinitely many solutions). We can compute the minifgunorm solution in

closed form asy = M (T})' Ax(AA" M (Ty) M (T,) Aa)~tsgn(za). SinceM (Ty) M (T,) = M(Ty),
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w = M (T},)v can be rewritten as
W = M(Ty)Aa (A M (Ty)Ap) 'sgn(za) (A.9)

Using the definition off a+g, Ta-g given in (2.17) in Theorem 2, we can see thiesatisfies the first two
conditions of the lemma. Recall that/’w > 0 for all i Ta+g is equivalent toATa+g’w = 0, and
similarly, A;w < 0 for all i € Tagis equivalent todr, /w < 0.

Consider any sefy disjoint with 7 U A of size|T,| < 5. Then,

1Az, @2 < 1Az, M(Th)Aall [(Aa"M(Ty) Ax) ™" lIsgn(za)l2

O 1, Ou 1 .
< (Bsut ) i = ag, (u, 3)Vu (A.10)
Bl b -
5

Notice thatas, (u, 5) is positive because we have assumed that oy, + Giw < 1. The bound in
(A.10) follows using the simple facts given in the beginning. We obtain (A.$0pkows. Consider
the first term|| Az "M (T;) Aal|. Using the definition ofd/ (7;) and fact (ii), | Az, M (T) Aall <
| Az, Aall + || Az, AT, (A1, A7, )~ Ar, Aall. Using fact (iii), [| A7, Aal| < 05, [|[ A7, Az, || < 05,

and|| Az, Aa|| < Oy, SinceAr,’ Ag, is positive definite, using fact (i) and fact (W) Ar,” A1, ) || =

1 1 05,]@ eu,k .
N (ArTAT,) < o, Thus, we get|A; 'M(Ty)Aall < (054 + #kbb). Consider the sec-

ond term||(AxA"M (Ty)Ax) Y|, Since AA'M (T,)Ax is positive definite, using fact (i) and (A.8),

1(Ax"M(Ty)An) 7 = Amin(AAl}w(Tb)AA) < - )1 T Using fact (vi), the third termi|sgnza) |2 =
—u _175,%

V.

Define the setE, asE := {j € (T UA)° : |Aj'w| > W} Notice that| E| must obey
|E| < 5 since otherwise we can contradict (A.10) by takifgC E. Since|E| < 5 andE is disjoint
with T'U A, (A.10) holds forT, = E, i.e., |Ag'd|s < ay,(u,3)y/u. Also, by definition of &,

|40 < aﬂ(:%”, forall j ¢ TU A U E. Thusw satisfies the third condition of the lemma.

Finally, ||z < |M(Ty)| |Aall I(Aa" M (Ty)An) Y| vu < Ky, (u)y/u. This follows using fact
(V); [|[AA]| < V1 + 6,; and fact (i) and (A.8). Thus, we have foundiaand E that satisfy all required

conditions.
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A.4 Proof of Lemma 3

Let M = M(T).

The lemma assumes théf + 6, + 91%,3 < 1. This means that (&), < 1 and soA7 Az is
positive definite; (b)Y, < 1 and so for any set); of size|T,| < s, Ar,’Ar, is positive definite; and
(c) as we show next, for any sé}; of size |T,;| < s, Ar,/M Ar, is also positive definite. Notice
that Ay, M Ar, = Ar,/ Az, — Ar,/ Ar(Ar’ Ar) =L A’ A1, which is the difference of two symmetric
non-negative definite matrices. LB denote the first matrix anB, the second one. Use the fact that

)\min(Bl — Bg) > )\min(B1> —i—)\min(—Bg) = )\mm(Bl) — /\maX(BQ) Where)\min(.), Amax() denote the

’ 2
minimum, maximum eigenvalue. Sindg,i,(B1) > (1 —6,) andApax(Bs) = || Ba|| < % <
02
5 thus

92
Amin(A1, M A7) > 1— 65 — . 5”:5 >0 (A.11)
— Ok

(the last inequality holds becau&e+ 6, + 91%,5 < 1). Thus,Ar, M Ar, is positive definite.
Since M is a projection matrix M M’ = M, and soAy,’ M Ar, = Ar,/ MM'Ar,. Thus, from
above Ay, MM’ Ar, is also positive definite. Thusgly,"M is full rank.

Any 0 that satisfiesi7’«w = 0 will be of the form
W = [I — Ap(Ap"Ap) ' Ap'ly == My (A.12)

We need to find ay s.t. Arp,/w = ¢, i.e. Ap,/M~ = c. SinceAz,’M is full rank, this system of
equations has a solution (in fact, it has infinitely many solutions). \Let M’Az,n. Thenn =
(A, MM'Ar,))"te = (Ar,/MAr,)"tc. This follows becausé/M’' = M? = M since M is a

projection matrix. Thus,
W= MM Ar,(Ar, M Az,) " e = M Az, (Ar,/ M Ar,) ¢ (A.13)
Consider any sefy; with |T,| < 5 disjoint withT' U T;. Then

1Az, @l < |[Az, MAz,| |(Az, M Az,) "] llcll2 (A.14)
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Consider the first term from the right hand side (RHS) of (A.14).

|Az,/MAz,|| < Az, Ar,|| + Az, Ar(Ar' Ar) "t Ar' A, |
Os 1 Os i
1— 6,

< O5+ (A.15)

This follows in a fashion exactly analogous to the derivation of the uppendon the first term of
(A.10) in the proof of Lemma 2. Consider the second term from the RHS d#(ASinced,’ M A7,

is positive definite,

1
Ap'MAr )Y = Al
||( Td Td) H )\min(ATd,MATd) ( 6)
Using (A.11),
/ —1 1
I(Az, MAz) Y| < - (A.17)
1- 55 - lj)(?k

Recall that the denominator is positive because we have assuméd-that + 91%,5 < 1. Using (A.15)

and (A.17) to bound (A.14), we get that for any $gtwith |T,| < 3,

Os.1 Os.10
0575 + 1—0p

5 B

F e

1Az, @]l2 lell2 = ax(s, 3)lcl2 (A.18)

Notice thatay (s, §) is non-decreasing ik, s, 5. Define an exceptional seft, as

ax (s, §)

V3

Notice that| E| must obey| | < 5 since otherwise we can contradict (A.18) by takifigC E.

E:={je(TUTy°:|A/q| >

lell2} (A.19)

Since |E| < 5 and E is disjoint with T U Ty, (A.18) holds forT; = E, i.e. |Ag"w|s <

ak(s, $)||c|l2. Also, by definition ofE, |A;'w| < %jgj‘é)ncng, forallj ¢ TUT, U E. Finally,

lolls < [IM Az, (Ag,"MAz,) 7| lell2

< |IM] Az 1Az, M Az,) | lell2
V140,
< ——llellz = Ki(s)llel2 (A.20)
1= 5 £

since||M|| = 1 (holds becausé/ is a projection matrix). Thus we have foundiaand a set? that
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A.5 Proof of Theorem 2

We construct av that satisfies the conditions of Lemma 1 by first applying Lemma 2 and then

applying Lemma 3 iteratively as explained below. Finally we defingsing (A.25) below. At iteration

zero, we apply Lemma 2 with = u. Lemma 2 can be applied becauge< k ando,, + d; + 9,%71! <1

(holds because condition 1 of the theorem holds). Thus, there exist®ad an exceptional sét; ;,

disjoint with7 U A, of size less thad = u, s.t.

Aj’wl
Aj'wl
Aj'wl
Aj'wl

|Ta1

AT, , w2
|Ajw |

w1 |2

>

IN

IN

<

0, Vj € Tasg

0,Vj € Tag

0,VjeT,

sgn(z;), VjeA

u

ag, (u, u)V/u

ag, (u,u), Vi ¢ TUAU Ty,

K, (u)vau (A21)

At iterationr > 0, apply Lemma 3 withl;; = A U Ty, (so thats = 2u), ¢; =0V j € A, ¢; =

Aj'w, ¥V j € Ty, ands = u. Call the exceptional séf;, ;. Lemma 3 can be applied because

Oou + O + 0,%7% < 1 (condition 1 of the theorem). From Lemma 3, there exists,a; and an
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exceptional seTy; 1, disjoint with7 U A U Ty, of size less thad = u, s.t.

Aj’wH_l = 0VjeT
Aj’wr+1 = 0,VjeA
Ajwrpr = Ajw, VjeTy,

|Td,r+1| < u

IN

AT, 4, wrial2 ar(2u, u) || Az, ,"wr |2

ak(2U, u)
T ||ATd,r/w'r”2

IN

| Ay w41
\Zi ¢ TUAU TyrUTg e

lwrialle < Kr(2u)l|Az,, wrl2 (A.22)

Notice that|T ;| < u (at iteration zero) anfll; 1| < u (at iterationr) ensures thag\ U Ty | < s =
2u forall r > 1.

The last three equations of (A.22), combined with the sixth equation of (Askhplify to

||ATd,r+1/w7"+1||2 < ak(quu)Takb(uvu)\/ﬂ
|Aj/w7’+1| < ak(2u7u)Takb(u7u)’

N ¢ TUAU Td,r U Td,r+1 (A23)

Jwrsillz < Kr(2u)ag(2u,u) ™ ag, (u, u)v/u

(A.24)
We can define
w = Z(—l)r_lwr (A.25)
r=1

Sinceay (2u, u) < 1, ||[w,||2 approaches zero with and so the above summation is absolutely conver-

gent, i.e.w is well-defined.
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From the first four equations of (A.21) and first two equations of (A.22)

Aj’w > 0,Vje Ta+g
Aj/w < 0, V] E Ta.g
Aj'w = 0,Vjel

Aj’w = Aj’wl = sgr(xj), VjieA (A.26)

Considerd;'w = A;' Y22 (—1)""'w, for somej ¢ T U A. If for a givenr, j € Ty, thenA; w, =
Aj'w,+1 (gets canceled by the+ 1% term). If j € Ty, thenA;'w, = A;'w,_1 (gets canceled by
ther — 1" term). Sincely - andT,,— are disjoint,j cannot belong to both of them. Thus,

Ajw = Z (=) A w,, Vi ¢ TUA (A.27)

T:jde,rUTd,r—l
Consider a givem in the above summation. Singe# T, UT,,_; UT UA, we can use (A.23) to get
|Aj w,| < ar(2u,u) " tag, (u,u). Thus, forallj ¢ T U A,
|Ajlw| < Z ak(2u7 u)r_lakb (u7 u)
T:j¢Td,7‘UTd,r—1

ay, (u, w)

1 — ag(2u,u) (A.28)

Sinceay,(2u, u) + ay, (u,w) < 1 (condition 2 of the theorem),

|Aj/w| <1, Vj ¢ TUA (A.29)
Thus, from (A.26) and (A.29), we have founduathat satisfies the conditions of Lemma 1. From
condition 1 of the theoremd, ., < 1. Applying Lemma 1, the claim follows.
A.5.1 Proof of Lemma5

Let A; denote the set of indices afwith the |A| largest values outside @f U A and A, denote
the indices of the nexXtA| largest values and so on. We bound the errad parts: hr, haua, and
h(ruaua,)- and we can obtain the following theorem. First, we bolhg||2 by using our second

constraint. Since andz are both feasible, so

2 < llor — prlla + lér — prll2 < 20VE (A.30)
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Next, we bound|hruaua,)el2-

1
Ihruavanclz <D lhayllz € —=lhaoayl (A.31)
i>2 Vu

Sincet = x + h is the minimizer of (2.14) and since battandz are feasible,
lzrelli = (@ + h)zellt = llzally = [[halls + 1hoaye s = 2 @uaylh (A.32)
and sincer(7ya)e = 0 then
Ihuayll < llhally (A.33)
Combining this with (A.31), and usin&% < ||hall2, we get

Ihcroavanella < > Ihalle < [[hall2

3>2
Next, since bothr andz are feasible,
Ah=A(E —z)=0 (A.34)
To upper boundhaua, |2, use RIP to get
(1 = d2u)llhava, I3 < [|Ahava, I3 (A.35)

To bound the right hand side of the above, notice that s, = Ah — 2]22 Ahp; — Ahr and thus
|Ahaua, I3 =< Ahava,, Ah > =Y < Ahaua,, Aha, > — < Ahaua,, Ahp > (A.36)
7>2
Using (A.34),
| < Ahauna,,Ah >1]=0 (A.37)

Using RIP and (A.34),

1> < Ahava, Ahay > | <D < Aha, Aha, > |+ 1) < Aha,, Aha, > |
j>2 Jj>2 Jj=2

< V20| hava, ll2)hall2 (A.38)
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Finally, using RIP and (A.30),

| < Ahaun,, Ahr > | < Opyoullhava, l2]|hr]|2 (A.39)

< Sproullhava, 220VE (A.40)
Combining the abové equations, we get
(1= dau) | hava, ll2 < 20k 2upVE + V200ullha 2 (A41)

Using|lhall2 < ||haua, |2 @and simplifying,

2\/E5k+2u
h < A.42
| AuAlllz_l_(ﬂ+1)52up (A.42)
Combining with (A.34) and (A.30), we get
1Pll2 < lhava, llz + Ihruavanellz + 1hrllz < 2[hava; ll2 + 20 < By (A.43)

A.6 Causal MAP Interpretation of Dynamic RegModCS

The solution of (2.22) becomes a causal MAP estimate under the followingnasens. Let
p(X|Y') denote the conditional PDF of of givenY and letj(X) denote the Dirac delta function.

Assume that

1. the random processés, }, {y.} satisfy the hidden Markov model propery(y:|z:) = 0(y: —

Azy) (re-statement of the observation model); and

p(@iwi—1) = p((xe) N, [xe-1)p((#e) ne_ [74-1), Where

P((@) N |we-1) = N((@) N,y (@e-1) N,y 00

(one o) = () e [ N@ne s
P{Zt)Ng | |Tt-1) = 2N exXp A

i.e. givenx,; (and hence givewV; 1), (x¢)n,_, and(z¢)ne , are conditionally independent;

—1

(zt)N,_, is Gaussian with meafy; 1), , while (z)ne | is zero mean Laplace.

—1
2. x;_1 is perfectly estimated fromy, 1, . .. y:—1, and

(jjt_l)Nt 1

p(xe—1lyo, .- ye—1) =0 | @1 — -
0

\JC
Nt—l
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3. &, is the solution of (2.22) withy = .
p

If the first two assumptions above hold, it is easy to see that the “caustdrim” at timet,
p(xt|lyr, . .. y¢), Satisfies
_@E0r=GeDTI3 @)l
p(aelys, - yp) = Co(ye — Axy)e 23 e v
whereT := N,_; andC is the normalizing constant. If the last assumption also holds, then clearly the
solution of (2.22) is a maximizer @f(x;|y1, ... y;), i.e. it is a causal MAP solution.
The MLE of A, af, can be computed from a training time sequence of sigials;i, o, . . . Tt

as follows. Denote their support§%-energy supports in case of compressible signal sequences) by

No, N1,...Ny,... Then the MLE is

TG
y = 3
22 INE
tmax vt e - 2
N t=1 ||(mt_xt—1)Nt_1||2
o, = S ]Nt_ﬂ (A.44)
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APPENDIX B. Appendix for the Proof of Reconstruction Error Bound of Regularized
Modified-BPDN

B.1 Proof of Proposition 1

WhenX = 0, Qro(S) = Arus’Arus. Thus,QrA(S) is invertible iff Apyg is full rank. When

A >0, QrA(S) is as defined in (3.15). Apply block matrix inversion lemma

-1
A B (A-BD'C)™! —(A-BD'C)"'BD!

C D -D'C(A-BD'C)"! D'+D!C(A-BD!C)"'BD!

with A = A" Ap+ Np, B = A7’ Ag, C = Ag’ Ap andD = Ag'Ag, clearlyQr »(S) is invertible iff
As'As andAr’' RA7+\Ir are invertible wherd := [I— Ag(As’Ag) "t A%]. WhenAg is full rank, (i)
Ag' Ag is full rank; and (i) R is a projection matrix. Thu® = R’ R and seAr' RAr = (RAT1) (RAT)
is positive semi-definite. As a resull;’ RA+ + M\l is positive definite and thus invertible. Hence,

whenAg is invertible, Q7 1 (S) is also invertible.

B.2 Proof of Theorem 4

In this subsection, we give the three lemmas for the proof of Theordim Keep notation simple we

remove the subscriptsy fromQ(A), M, P(A), d(A), ¢(A), ERC(A) in this and other Appendices.

Lemma 6 Suppose thaf(A) is invertible, then

[d(A) = ¢(A)[l2 < VA - f1(A) (B.1)

Lemma 6 can be obtained by settifg.(b) = 0 and then using block matrix inversion 6n(A).

The proof of Lemma 6 is in Appendix B.4.1. NeX(A) — z||2 can be bounded using the following
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Lemma 7 Suppose thaf)(A) is invertible. Then
le(A) = zll2 < Afa(A)|zr — firll2 + f3(A)][wl]2 (B.2)
The proof of Lemma 7 is in Appendix B.4.2.

Lemma 8 If Q(A) is invertible, ERC(A) > 0, and~y > v*(A), thenL(b) has a unique minimizer

which is equal tai(A) .

Lemma 8 can be obtained in a fashion similar to [2, 28]. Its proof is given ireAdx B.4.3.
Combining Lemmas 6, 7 and 8, and using the falftA) — z||2 < [|d(A) —c(A)||2+ ||c(A) — z]|2,

we get Theorem 4.

B.3 Proof of Theorem 5

The following lemma is needed for the proof of the corollaries leading to Emeér.

Lemma 9 Suppose thaf)(A) is invertible. Then

le(A) = zll2 < Afa(A) |2z — frll2 + f3(A)l|wllz + fa(A) ]z gz l2 (B.3)

Sincec(A) is only supported off' U A andy = A ;325 + A a%a\& + @, the last term of (B.3)
can be obtained by separatimg\ & out. The proof of Lemma 9 is given in Appendix B.4.4.
Using Lemma 9, we can obtain Corollary 3 and then Corollary 4. Then minimizeathvalowed

A’s in Corollary 3, we get Theorem 5. The proof of Corollary 3 and 4given as follows.

B.3.1 Proof of Corollary 3

Notice from the proof of Lemma 6 and Lemma 8 that nothing in the result chahgesreplace
AbyaA C A. By Lemma 6 forA, we are able to bounfki(A) — ¢(A)||o. Hence, we get the first
term of (3.25). Next, invoke Lemma 9 to boufid(A) — z||» and we can obtain the rest three terms of

(3.25). Lemma 8 foA gives the sufficient conditions under whidhA) is the unique unconstrained

minimizer of L(b).
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B.3.2 Proof of Corollary 4

Corollary 4 is obtained by bounding' (A). 7*(A) = || A ,x) (v = Ac(A))[|lo/ ERC(A) can

be bounded by rewriting — Ac(A) = Apua(zrua — (¢(A))rua) + w and then boundingzroa —
(c(A))uall2 = ||z — ¢(A)|2 using Lemma 9. Doing this, we get

| Ay (4 — Ac(A))loo

< max |A/Apua(zroa — (C(A))TUA)\ + A w]

i¢TUA
< max 14" Azoallzlleroa = (e(A))ua)ll2 + [Ai'w)|
i ETU

< maxco A)Afo(A) |[ar — ur |2 + maxcofA) f3(A)|[w]
+maxcofA) f4(A) |z a4 ll2 + 1Az oo
Using the above inequality to bound(A) and replacingy in f(T, X\, A, A, ~), given in (3.25), by this

bound, we can get (3.27).

B.4 Proof of Lemmas 6, 7, 8, 9

B.4.1 Proof of Lemma 6

We use the approach of [2, Lemma 3]. We can minimize the fundti@n over all vectors sup-
ported on sef’ U A by minimizing:
1 2 1 ~ 2
F®) = 5lly = Aruabruallz + 5Allbr — Arllz + v[balls (B.4)

SinceQ(A) is invertible, F'(b) is strictly convex as a function &fr_a. Then at the unique minimizer,
d(A),0 € VE(D)|p—aca)- LetO||bre||1][p—qa) denote the subgradient set|dfr<||; atb = d(A). Then

clearly anyg in this set satisfies

or = 0 (B.5)
l¢relloc < 1 (B.6)
Now, 0 € VF(b)[p—a(a) implies that
[d(A)]r — fir
(Arua"Aroa)[d(A)]rua — Aroa'y + A +vérua =0 (B.7)
Oa
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Simplifying the above equation, we get

[A(A) s = QA) H(Aruay+ A | T | = vérua) (B.8)
0A

Therefore, using (B.5) and (3.20), we have

[e(A)]rua — [d(A)]rua = Q(A) ! or (B.9)

TN

Since
A7 A + N Ap'Aa
Q(A) = ; (B.10)
AN Ar AN AN
using the block matrix inversion lemma

-1
A B A"+ A7'B(D-CA'B)"'CA™! A 'B(D-CA'B)™!

C D —(D-CA'B)"'CA™! (D - CA'B)™!
with A = A7 Ap + M1, B = A" Ax, C = Ap'Ar andD = A’ A and usingpr = 0, we obtain

—(A7 A1 + M) T AT AA (A M AA) o

Y(AA MAA) oA

[e(A)lrua = [d(A)]lrua =

Since||pa |l < 1, the bound of (B.1) follows.

B.4.2 Proof of Lemma 7

Recallc(A) is given in (3.20). Since bothandc(A) are zero outsid& U A, then||c(A) — z||2 =

I[e(A)]rua — zruall2- Withy = Az + w and Az = Appazrua, We have

Arua'y = Arua’(Aruazrua + w) (B.11)
. It Org _ . . .
Notice A7, Arua = Q(A) — A . Using (B.11), we obtain the following equation
Osr Oss
/ T /
Arua'y = Q(A)zrua — A + Apua'w (B.12)
(N
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Then, using (3.20) we can obtain

fr — a7

[e(A)]7ua — z70A = AQ(A) ! +Q(A) " Apua’w

(UN

Finally, this gives (B.2).

B.4.3 Proof of Lemma 8

The proof is similar to that in [2] and [28]. Recall th&tA) minimizes the functiorL.(b) over allb
supported off’ U A. We need to show that if > 7*(A), thend(A) is the unique global minimizer of
L(b).

The idea is to prove under the given condition, any small perturbdtion d(A) will increase
function L(d(A)),i.e. L(d(A) + h) — L(d(A)) > 0,V||h||ec < € for e small enough. Then sind&(b)
is a convex functiond(A) will be the unique global minimizer[2].

Similar to [28], we first split the perturbation into two pafts= u + v wherew is supported on
T U A andw is supported ofi7’ U A)¢. Clearly||u|lco < ||h]lcc < €. We consider the case# 0 since

the case = 0 is already covered in Lemma 1. Then
1
L(d(A) +h) = 5lly = Ad(A) +u) = Av]l; +
1 .
AT+ ur +vr = jir |3+ 411(d(A) + w)re + vre|
Then, we can obtain
L(d(A) + h) = L(d(A)) = L(d(A) + u) — L(d(A))
1
+5 11403 = (y = Ad(A), Av) + (Au, Av) + 5|ore[|s
Sinced(A) minimizes L(b) over all vectors supported i U A, L(d(A) + u) — L(d(A)) > 0.
Then sinceL(d(A) + u) — L(d(A)) > 0 and ||Av|2 > 0, we need to prove that the rest are
positive,i.es||vre|1 — (y — Ad(A), Av) + (Au, Av) > 0. Instead, we can prove this by proving
a stronger conditiony||vze||y — [(y — Ad(A), Av)| — |(Au, Av)| > 0. Since(y — Ad(A), Av) =
v'A'(y — Ad(A)) andv is supported o7 U A)¢,
[{y — Ad(A), Av)| = |voayAua)' (y — Ad(A))]

< wlillAua)’ (v — Ad(A)) o
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Thus,

[y — Ad(A), Av)| < max_|(y — Ad(A), Aol
wgTUA

Meanwhile,

[{Au, Av)| < [[ A" Auloo||v]l1 < € A"Allo]lv]ly (B.13)
And ||v||1 = |Jure||1 sincew is supported o7 U A)¢ C T°. Then what we need to prove is

- — Ad(A), Ay)| — €] A"Al oo 0 B.14
[v w{gg&l@ (A), Av)| = el A’Alloo] [[v]]1 > (B.14)

Since we can seleet> 0 as small as possible, then we just need to show

Y Jmax [(y — Ad(A), Au)| >0 (B.15)

Sincey — Ad(A) = (y — Ac(A)) + A(c(A) — d(A)), and by Lemma 1 we know (¢(A) — d(A)) =
YMAN(AA' M AA) LA and since|pall- < 1, we conclude thati(A) is the unique global mini-
mizer if

[ Acruay'(y = Ac(A) oo < 7[1 = mas [ P(A)Ax"MAu]1] (B.16)
Next, we will show thati/(A) is also the unique global minimizer under the following condition

A (v = Aera(@))l =11 - max | P(A)AxMA|] (B17)

Since the perturbatioh # 0, thenu # 0 or v # 0. Therefore, we will discuss the following three
cases.
1. u # 0. In this case, we knou(d(A) + u) — L(d(A)) > 0 sinced(A) is the unique minimizer

over all vectors supported aiiU A. Therefore L(d(A) + h) — L(d(A)) > 0if (B.17) holds.

2. u =0, v # 0 andv is not in the null space af, i.e., Av # 0. In this case, we knoWAv|3 > 0.

Hence,L(d(A) + h) — L(d(A)) > 0 when (B.17) holds.

3. u=0,v# 0andAv = 0. In this caseL(d(A) + h) — L(d(A)) = v|lvre|1. Thus,L(d(A) +
h) — L(d(A)) > 0if v > 0. Clearly, L(d(A) + h) — L(d(A)) > 0 when (B.17) holds.

Finally, combining (B.16) and (B.17), we can conclude #\ak) is the unique global minimizer if the

following condition holds

[Arunay'(y — Ac(A))]|o < VERT(A) (B.18)
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B.4.4 Proof of Lemma 9

Consider aA C A such thatAz has full rank. Sinced, x'v = Ay z (ApozTroa +w +
Ax\ATa\A)» €Xpanding these terms we have
T

Ay = QM) z — A 0 + Appa'w+ ATUA/AA\AxA\A (B.19)
A

Then, using this in the expression fgA) from (3.20), we get

sy [ T

[C(A)]TUA — TTUA = OA

OA\A

QA) Ay 3w . QA) A 3 A AT A&

N (B.20)

URW:Y —TA\A

Therefore, we get (B.3).

B.5 Sufficient Conditions’ Comparison using RIC and ROC

We briefly compare the results for reg-mod-BPDN, mod-BPDN and BP Diapily by compar-
ing the sufficient conditions required for them to hold. The comparisonedbtiunds is not easy since
each holds under a different set of sufficient conditions. This will teedlater using the results of
Section IV which hold without any sufficient conditions. For the comparsiosufficient conditions,
we use the restricted isometry constant (RI€)and restricted orthogonality constant (RO€3,s/
[18] defined next. These depend only on the sizes of thelsetsand N and hence make a theoretical
comparison easier. However the comparison can only be qualitative. tharil ROC are not com-
putable (computation complexity is exponential in the set size) and hencetdansed for numerical
comparisons. On the other hand, the ERC and the bounds obtained lpabelERC approach are
computable and can be used for a quantitative numerical comparison.

Consider mod-BPDN versus BPDN first. Let us compare their ERC’s.ddkimfacts that Ar' A ||2 <

Oy a) » (A" Ap + M) 72 < 1/(1 — &7 + A) and the fact that for a vector of length/,

www.manharaa.com




98

Izl < Viliz]l2,

ERCTA(A) = 1= VI[A[[Pra(A)]2]Aa"MraAsll2

O1a1,7191a)1
1— m(elA"l + 1_5\T\+/\ )

07, a1
1 =0 = =555

Y

(B.21)

where the numerator of the second term comes from bouridingM y A, ||2 and the denominator of
the second term comes from boundigr »(A)||2. In practice, for example in recursive reconstruction
applications like real-time dynamic MRI, usuallA| ~ |A.| < |[N|and|N| ~ |T| ~ |T U A|
[40]. Under this assumption, when fewer measurements are availablsti{bahough to ensure that
d;n) < 1), the denominator for the second termioRCy ,(N) (BPDN), 1 — 6/, will be smaller than
that of ERCr(A) (Mod-BPDN),1 — 65| — (f%;’“?". Also, \/W in its numerator will be larger than
\/W for mod-BPDN, while the other numerator terms will be similar in both cases. Emisasult in
a smaller (and possibly negative) lower bound on the ERC for BPDN.

To compare reg-mod-BPDN and mod-BPDN, notice that mod-BPDN ndedg, to be full rank
where as reg-mod-BPDN only needg to be full rank which is much weaker.

We show a numerical comparison in Table 3.1 (simulation details given in Chadder Notice
that BPDN need90% measurements for its ERC to become positive where as mod-BPDN only needs
19%. Moreover even witlh0% measurements, its ERC is just positive and very small. As a result its
error bound is large2(¢% normalized mean squared error (NMSE)). Similarly notice that mod-BPDN

needs: > 19% while for reg-mod-BPDNM: = 13% also suffices.

Remark 8 A sufficient conditions’ comparison only provides a comparison ofwehgiven result can
be applied to provide a bound on the reconstruction error. For exanipkmulations, of course BPDN
provides a good reconstruction using much lesser than 90% measuteniowever, when < 90%
we cannot bound its reconstruction error using Theorem 4 above @WMBthis is the same as the

result of [2]). We address this issue in the next section.

B.5.1 Equivalence between Theorem 5 and Theorem 6 bounds

We can use the weak law of large numbers (WLLN) to argue that a8 | N| approach to infinity

thebound fromsFheeremy6,converges to that of Theorem 5 in probabiigygive the basic idea here.
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The complete proof will be in future work. The WLLN argument applies when

e Each element ofl is iid with zero mean and variandgn, i.e. A = ﬁZ where each element

of Z is iid with zero mean and unit variance.
e The noisew is bounded i’y norm, i.e.||wlj2 < n and

e n,s— 00

WLLN can be used to argue that ass — oo, with high probability (w.h.p.),FRC(A) and the
multipliers g1, g2, g3, g2 depend only on the sizé, of the setA, i.e. they are the same for all seks
of a given size. Thus, the only term ifA) that varies for different setd € G, is HxA\AHQ. Thus
argming, g(A) = argming, [z \All2- Since ERC also only depends oh, for a givenk, either
ERC(k) > 0 or ERC(k) < 0. WhenERC(k) > 0, G, = {A C A,|A| = k}, where as when
ERC(k) <0, G, is empty. The minimum value over an empty set is infinity. Thuisyg, ||='EA\AH2 =
By.. Using (3.36), (3.32) and (3.35), this means thah*) = g(A**), i.e. the bounds from Theorems
5 and 6 are equal.

The WLLN argument is as follows. Note that all termsgin go, g3, g4 and ERC' that depend on
A are functions of eitherl ;A or A7’ Az or Ay My zAx or AL < w Considerdz’Ax.

(AA,AA>Z'J _ Zl‘zl A?,T = % ?:1 ZZT ifi=j
S AigAjr = 5300 Zin Ziy i

ClearlyE[Z},] = 1 and its varianceV ar[Z? ] = 3 where af|Z; , Z; | = O while Var|Z; . Z; ] = 1.
Here E[-] andV ar[-] denote the expectation and variance computed over the distributibnidfus by
WLLN, asn — oo, A;"A 4 approaches the identity matrik, w.h.p.. A similar argument can be made
for each element afl;' A 5 to show that this approaches the zero matrix as co. A similar argument
can also be made fav/r y whens := |N| (and hencg¢T’|) goes to infinity to show that all its diagonal
elements converge to one value and all the non-diagonal ones cotwengether value. This fact can
then be used to make a WLLN argument for each element gf\/y A 5. Now considerg, which
contains the term A zua)e'wl|e. Notice that(Apuay'w); = 375 w;A;;. Taking expectations

only over the elements of, E[(A(7ua)e'w)i] = 0 andVar[(Aquay'w)i] = Y)_ wis < - Thus
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by WLLN, each element of the vectoct(TuA)c’w approaches zero, and hence its infinity norm also
approaches zero w.h.p.. Thus, w.h.p., for a given Bjzall these three matrices alﬁm(TuA)c’wHoo,

and as a result all adERC, g1, g2, g3, g4, converge to a value that does not depend on thAset
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